
Application Note

Programming of Router Apps

Advantech Czech s.r.o., Sokolska 71, 562 04 Usti nad Orlici, Czech Republic
Document No. APP-0025-EN, revision from 15th November, 2024.

© 2024 Advantech Czech s.r.o. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photography, recording, or any information storage and retrieval system without written consent.
Information in this manual is subject to change without notice, and it does not represent a commitment on the part of Advantech.

Advantech Czech s.r.o. shall not be liable for incidental or consequential damages resulting from the furnishing, performance,
or use of this manual.

All brand names used in this manual are the registered trademarks of their respective owners. The use of trademarks or other

designations in this publication is for reference purposes only and does not constitute an endorsement by the trademark holder.

Used symbols

Danger – Information regarding user safety or potential damage to the router.

Attention – Problems that can arise in specific situations.

Information – Useful tips or information of special interest.

Contents

1. Basic Information 1

1.1 Recommended Tools . 1
1.2 SDKs and Cross Compiler Available . 2

2. Directory Structure 3

2.1 Internal Archive Structure . 4
2.2 Information Files in /etc Directory . 5
2.3 Configuration Files in /etc Directory . 6
2.4 Scripts in /etc Directory . 6
2.5 Web Interface Files in /www Directory . 9

3. Programming 10

3.1 Actions – Add, Update, Delete and Scripts Call Order . 10
3.1.1 Router App Installation . 10
3.1.2 Router App Update . 10
3.1.3 Router App Uninstallation . 11

3.2 Hardware Interfaces . 11
3.2.1 Serial Line Interface . 12
3.2.2 Ethernet and Network Interfaces . 12
3.2.3 I/O Interface . 13
3.2.4 User LED Interface . 13
3.2.5 Non-volatile Memory . 14
3.2.6 RAM . 15
3.2.7 Storage Access – USB Flash and SD Card . 15
3.2.8 I/O Control – Lower Hardware API . 15

3.3 Firewall Integration . 18
3.4 Libraries and Dependency . 21
3.5 Older Firmware Compatibility . 21

4. CPU and Toolchains 22

4.1 CPU Architecture . 22
4.2 Crosscompilation – Toolchains and Flags . 22

5. Constraints 23

6. Related Documents 24

List of Figures

1 Router Apps Programming Scheme . 1
2 Block Diagram of v3 Routers . 12
3 The Default Server in the NAT Configuration (for IPv4) . 18

List of Tables

1 SDKs Available . 2
2 Cross Compilers Available . 2
3 io Options . 13
4 LED Options . 13
5 Sizes of /var/data Directory . 14
6 Sizes of /opt Directory . 14
7 RAM Memory Parameters . 15
8 GPIO Driver Iocontrol Command Codes . 16
9 GPIO Port Type Codes . 17
10 GPIO Cellular Module Board Type Codes . 17
11 CPU Architecture . 22

1. Basic Information

Router App (formerly User module) can be used for special software applications in the Advantech
routers. This is to customize the router and to add new features. This guide describes the programming of
a router app so it can work in the Advantech routers. The directory structure of a router app, programming
methods, and technical information are explained to make it easy when programming your own rotuer app.

The Linux OS is running in the Advantech routers. It is recommended to use the Linux OS for router apps
development, but it is not required. You can use C, C++ or Python language to develop the router app. See
the section 1.2 below for SDKs and cross compilers available. The general structure, scripts and general
rules used in all router apps development platforms are described in this guide.

Figure 1: Router Apps Programming Scheme

1.1 Recommended Tools

• Cross compiler according to the platform used (see Chapter 1.2 below).

• Optionally SDK for easier development and usage (see Chapter 1.2 below).

Programming of Router Apps 1

1.2 SDKs and Cross Compiler Available

1.2 SDKs and Cross Compiler Available

This chapter lists available SDKs and Cross Compilers that can be used for easier router apps develop-
ment. The table below states the SDKs.

Language Router Platform SDK Download Link

C/C++ v2, v2i, v3, v4, v4i https://bitbucket.org/bbsmartworx/
modulessdk

Python v2i, v3, v4, v4i https://bitbucket.org/bbsmartworx/
modulessdk

Table 1: SDKs Available

Follow the README file in the SDK. It is recommended to download the SDK and look at the examples
there when going through the following chapters.

Use the cross compiler mentioned in the table below to compile the SDK and an user module written in
C/C++ language. Follow the README file instructions included in the compiler.

Language Router Platform Cross Compiler Download Link

C/C++ v2, v2i, v3, v4, v4i https://bitbucket.org/bbsmartworx/
toolchains

Table 2: Cross Compilers Available

Programming of Router Apps 2

https://bitbucket.org/bbsmartworx/modulessdk
https://bitbucket.org/bbsmartworx/modulessdk
https://bitbucket.org/bbsmartworx/modulessdk
https://bitbucket.org/bbsmartworx/modulessdk
https://bitbucket.org/bbsmartworx/toolchains
https://bitbucket.org/bbsmartworx/toolchains

2. Router App Directory Structure

To upload the rotuer app into the Advantech router you need a *.tgz archive with a single directory in it
(archive is packed using tar and then compressed using gzip) tool. The name of the *.tgz archive and the
directory in it has to be the same. This name can contain up to 24 characters of: ’a’-’z’, ’A’-’Z’, ’0’-’9’ and ’_’.
It is not recommended to use spaces in the names of subdirectories and files.

The <name> directory inside the archive can contain ’/etc’ subdirectory with the appropriate files in it
– see the structure below and the following sections. There can be a ’/www’ subdirectory if there is a
web interface of a router app, ’/bin’ subdirectory and any other subdirectories and files you need. All
subdirectories and files are optional, you can employ what you need in your router app.

Router app archive name convention:

<name>.<platform>.tgz, e.g. ’mymodule.v3.tgz’.

Command for creating router app archive:

tar -c --owner=0 --group=0 --mtime="2001-01-01 UTC" --exclude-vcs -C
$MODNAME | gzip -n > $MODNAME.$PLATFORM.tgz

Programming of Router Apps 3

2.1 Internal Archive Structure

2.1 Internal Archive Structure

The schema below illustrates the internal structure of the router app archive.

<name>
|
|— /etc/ Subdirectory with scripts, information and configuration files.
| |
| |— defaults Default configuration values.
| |— depends List of router apps this app depends on.
| |— init Initial script.
| |— install Script will run during installation process.
| |— ip-up Script executed when WAN connection is established (for IPv4).
| |— ip6-up Script executed when WAN connection is established (for IPv6).
| |— ip-down Script executed when WAN connection is lost (for IPv4).
| |— ip6-down Script executed when WAN connection is lost (for IPv6).
| |— name Human readable name used in the web interface.
| |— requires The lowest compatible version of router’s firmware.
| |— settings Actual configuration file. Not in the *.tgz archive.
| |— uninstall Script will run during uninstallation process.
| \— version Version of the router app showed in the web interface.
|
|— /bin/ Subdirectory with your auxiliary files, daemons or *.cgi scripts.
|
\— /www/ Subdirectory with web interface files.

File type legend:

Information files - see Chapter 2.2
Configuration files - see Chapter 2.3
Script files - see Chapter 2.4

Programming of Router Apps 4

2.2 Information Files in /etc Directory

2.2 Information Files in /etc Directory

depends

There is a list of dependencies (all rotuer apps the app depends on) in this file. The format of the file is
one router app per line and the name of the router app has to be same as the name of user app’s directory
<name> in the *.tgz archive.

File content example:

Python
otherModuleName

name

This file contains the long human readable app name. It will be shown in the web interface of the router.
Following characters are recommended to be used for router app name: ’a’-’z’, ’A’-’Z’, ’0’-’9’ and ’ ’. If there
is no ’name’ file, the directory <name> is used instead.

File content example:

My Router App

requires

There is required minimal version of the router’s firmware in this file. It has three numbers format of the
router firmware versioning – MAJOR.MINOR.PATCH.

File content example:

5.2.0

version

The file with app version information. It will be shown in the web interface. The recommended format is the
semantic versioning MAJOR.MINOR.PATCH and a date in YYYY-MM-DD format as shown below. If this
file is missing, the version of the router app will not be shown in the web interface of the router.

File content example:

1.0.0 (2015-07-15)

Programming of Router Apps 5

2.3 Configuration Files in /etc Directory

2.3 Configuration Files in /etc Directory

defaults

The default configuration parameters have to be saved in this file. These parameters are used during in-
stallation and when RST button on the router is pressed (back to factory defaults reset). The content of
this file should be copied by ’init’ script (see the next section) into the ’settings’ file on install (see below)
to enable the backup of configuration of the router app. You do not need this file if the router app has no
configuration. Variables have to be defined this way:

MOD_<name>_<variable_name>=<value>,

where MOD stays for ’rotuter app’ so it is recognizable when together with rest of the configuration param-
eters of the router, <name> is the name of the rotuter app (same as the the directory and archive name)
and variable_name is the desired parameter name. Please use uppercase letters for the <name> and
variable_name.

File content example:

MOD_MYMODULE_ENABLED=1
MOD_MYMODULE_PARAM1=0
MOD_MYMODULE_PARAM2=5
MOD_MYMODULE_PARAM3=20

settings

This file should not be in the *.tgz archive of the router app. It should be created during installation by ’init’
script. There should be a line copying the ’defaults’ file into the ’settings’ file in the ’init’ script when installing
the router app. See ’init’ script in the chapter 2.4.

The ’settings’ file allows to make the backup of the configuration. It can be backed up together with
router’s configuration and it can remain on the router app update.

When backing up the router’s configuration, the ’settings’ file is added to the router’s configuration file
and all the parameters are downloaded together in a single *.cfg file. When updating the router app, the
’settings’ file is backed up and the newer version of the router app looks for the ’settings’ file first. It goes
back to the ’defaults’ file only if there are some new parameters.

2.4 Scripts in /etc Directory

init

This is an initialization script. It is called with different parameters in different situations (start of the router,
add, update, delete of the router app, see the chapter 3.1). It can be called manually with the desired
parameter, too. If there is no ’init’ script, nothing happens and nothing is done on the router app initialization
in the given situations. These are the parameters of the script:

• start – The ’init’ with the ’start’ parameter is called automatically when starting the router or after the
installation of the router app.

Programming of Router Apps 6

2.4 Scripts in /etc Directory

• stop – The ’init’ with the ’stop’ parameter is called automatically before update or uninstalling the
router app.

• restart – The ’init’ with the ’restart’ parameter is not called automatically – it can be called manually
only.

• status – The ’init’ with the ’status’ parameter is not called automatically – it can be called manually
only. It is the status whether the router app is running or not.

• defaults – The ’init’ with the ’defaults’ parameter is called automatically after installing the router app
or when the RST button is pressed. This is to copy the contents of ’defaults’ file into the working
configuration – ’settings’ file.

An example of an ’init’ script is shown below. There are just strings returned to inform what is going on in
the example. Notice the copy ’cp’ at the ’defaults’ parameter to enable the backup of configuration. You
can find this source code in the ’example1’ of our SDK documentation.

#!/bin/sh

MODNAME=mymodule

case "$1" in
start)

echo "Starting module $MODNAME: done"
exit 0
;;

stop)
echo "Stopping module $MODNAME: done"
exit 0
;;

restart)
$0 stop
$0 start
;;

status)
echo "Module $MODNAME is running"
exit 0
;;

defaults)
cd /opt/$MODNAME/etc && cp defaults settings
;;

*)
echo "Usage: $0 {start|stop|restart|status|defaults}"
exit 1

esac

Programming of Router Apps 7

2.4 Scripts in /etc Directory

install

This is an installation script. It is executed just after the uploading of the router app into the router (files
copied). See the next chapter 3.1 for more details on the order of scripts executed during the installation
process.

uninstall

This script is executed during the uninstallation process of the router app. It is called just after stopping the
router app (’init stop’) and just before deleting the files of the router app. See the next chapter 3.1 for more
details on the order of scripts executed during the uninstallation process.

ip-up

This script is executed when the WAN connection using IPv4 address is established. It works the same
way as Up/Down Script in the router’s web interface, but just for the particular router app. This script is
called with following parameters:
/opt/mymodule/etc/ip-up <ip-address-of-WAN-interface> <WAN-interface>
Below is the example of the script execution for internet connection established via Mobile WAN with IPv4
address 10.40.28.64.

/opt/mymodule/etc/ip-up 10.40.28.64 ppp0

ip6-up

This script is executed when the WAN connection using IPv6 address is established. This script is called
with following parameters:
/opt/mymodule/etc/ip6-up <ip6-address-of-WAN-interface> <WAN-interface>
Below is the example of the script execution for internet connection established via Mobile WAN with IPv6
address fc00::a40:37.

/opt/mymodule/etc/ip6-up fc00::a40:37 ppp0

ip-down

This script is executed when the WAN connection using IPv4 address is lost. It is called with the same
parameters as the previous ’ip-up’ script:
/opt/mymodule/etc/ip-down <ip-address-of-WAN-interface> <WAN-interface>
Below is the example of the script execution for internet connection lost on Mobile WAN with IPv4 address
10.40.28.64.

/opt/mymodule/etc/ip-down 10.40.28.64 ppp0

Programming of Router Apps 8

2.5 Web Interface Files in /www Directory

ip6-down

This script is executed when the WAN connection using IPv6 address is lost. It is called with the same
parameters as the previous ’ip6-up’ script:

/opt/mymodule/etc/ip6-down <ip6-address-of-WAN-interface> <WAN-interface>

Below is the example of the script execution for internet connection lost on Mobile WAN with IPv6 address
fc00::a40:37.

/opt/mymodule/etc/ip6-down fc00::a40:37 ppp0

2.5 Web Interface Files in /www Directory

This directory contains any .html, .cgi or other files of the web interface of the router app. If there is file
index.html, index.cgi etc., it is accessible in the router’s web interface in the Customization section, Router
Apps. If there is no ’www’ folder, there is no link to the web interface of the router app and if there is no
’index’ file, there is no web interface to show up for the router app. The directory is linked to this URL
address of the router:

/opt/mymodule/www −→ http(s)://<router ip address>/module/mymodule

Regarding security you have 2 options – secured with the router’s usernames and passwords or unse-
cured:

1. Secured: create a ’.htpasswd’ file in this ’www’ directory with a symbolic link to the file ’/etc/htpasswd’
where the router’s usernames and encrypted passwords are stored. This is the recommended option.
Example of the ’.htpasswd’ file:

ln -s /etc/htpasswd .htpasswd

2. Unsecured: there is no ’.htpasswd’ file and anyone can access the web interface and files of the
rotuer app. It is strongly recommended not to use this option.

Programming of Router Apps 9

3. Programming Information

Useful information for programming of rotuer apps can be found in this chapter. There is handling of
rotuer app explained – adding, updating and deleting the rotuer app – what scripts are called in what
order. Access to the hardware interfaces of the router is described. Important note on firewall integration,
information on libraries and dependency, and older firmware compatibility are written out.

You can use lot of programs and commands already included in the router’s operating system. See the
Command Line Interface Application Note for the documentation or press TAB key twice when connected
to the console of the router (via SSH or Telnet). The list of possible commands will show up. You can write
<command> --help for more information on that command.

3.1 Actions – Add, Update, Delete and Scripts Call Order

Generally you can put anything you need in the shell scripts, but please make sure that the actions
executed can be finished within a few seconds. The order of scripts called on different actions is described
below. If you want to see the log of scripts called (in the web interface System Log, for debug reason etc.),
add this line at the beginning of each script. Here $0 is a script itself and $@ are its parameters.

/usr/bin/logger -t mymodule "DEBUG: $0 $@"

3.1.1 Router App Installation

Installation of the router app is done by uploading the router app into the router (Customization section).
The *.tgz archive is extracted and the router app directory is copied into the /opt directory of the router’s
file system. So the path to the router app files is /opt/mymodule. After files are copied the scripts are called
in the order below and with these parameters:

1. Add or Update button pressed – *.tgz archive uploaded, extracted and copied into the /opt directory.

2. /opt/mymodule/etc/install – script executed.

3. /opt/mymodule/etc/init defaults – script executed.

4. /opt/mymodule/etc/init start – script executed.

3.1.2 Router App Update

Update is done the same way as adding the router app, but as the router app has the same name, the
previous running version is stopped first and the settings is backed up, too:

1. Add or Update button pressed.

2. /opt/mymodule/etc/init stop – script is executed if the name of the router app is the same. The
configuration file ’settings’ is backed up. Then the old router app files are deleted and the new *.tgz
archive is uploaded, extracted and copied into the /opt directory.

Programming of Router Apps 10

https://icr.advantech.com/download/application-notes#command-line-interface

3.2 Hardware Interfaces

3. /opt/mymodule/etc/install – script executed.

4. /opt/mymodule/etc/init defaults – script executed. Now when the ’settings’ file is created from
’defaults’, it is overwritten by ’settings’ file from backup. If there are any new parameters, they are
taken from ’defaults’.

5. /opt/mymodule/etc/init start – script executed.

3.1.3 Router App Uninstallation

Deleting of the router app is done by pressing the Delete button next to the router app you want to delete.
These scripts are executed before deleting the files of the module:

1. Delete button pressed at the router app.

2. /opt/mymodule/etc/init stop – script executed.

3. /opt/mymodule/etc/uninstall – script executed.

4. The whole router app directory is removed from /opt directory of the router.

3.2 Hardware Interfaces

The access to the hardware interfaces is described in this chapter. You can use serial interface, all the
network interfaces, binary inputs/outputs, user LED, MRAM or eMMC, storage space etc. in your router
app.

See the block diagram for v3 routers in Figure 2. v2 routers are similar, but have different memory sizes,
different CPU and the PORT boards are not interconnected the same way. Actual differences are described
in the text below.

Programming of Router Apps 11

3.2 Hardware Interfaces

Figure 2: Block Diagram of v3 Routers

3.2.1 Serial Line Interface

This applies to the routers with serial line interface only. Access the serial line as a file since the Linux
OS is running in the router. The path to the serial line file in the router’s file system is /dev/ttySn, where n
stands for the number of the UART serial port starting with 0 for the first one. Port mapping can vary based
on the router platform and the PORT used.

Read the file to get the serial line input and write to this file to send data via serial line. Handle the files
using appropriate locks: A router app can be started as root, which means it can have full access to the
system. Access to serial lines should be cared using file check and creation (locks) in directory /var/lock. A
lock file has to be created in /var/lock before opening the serial line. The lock file name contains of ’LCK..’
string and device name, e.g. for /dev/ttyS0 the lock file will be LCK..ttyS0. Save the process identifier
(PID) of the process running on an open device into this lock file. The PID format is 11 characters long –
fill the spaces before the number and add end of the line. (E.g. for process 5634: space, space, space,
space, space, space, 5, 6, 3, 4, end of line). The lock file has to be deleted when the work with the interface
is finished. There is a function to handle this in our SDK library.

3.2.2 Ethernet and Network Interfaces

You can access Ethernet and other network interfaces as a standard Linux network interfaces. Use
ifconfig command to see and configure the network interfaces in the router. Detailed description of the

Programming of Router Apps 12

3.2 Hardware Interfaces

command can be found in the Command Line Interface Application Note.
There can be additional network interfaces in the router, depending on the configuration and tunnels

settings.

3.2.3 I/O Interface

You can use the io program to control binary outputs and to read binary inputs. It supports reading state
of binary outputs and setting state of counters. See the User’s Manual for your router for details on binary
inputs/outputs. Note: Binary inputs/outputs have inverse logic.

Synopsis: io [get <pin>] | [set <pin> <value>]

Option Description

get Get the state of input

set Set the state of output

Table 3: io Options

Examples:

io set out0 1 Set the state of binary output OUT0 to 1.
io get bin0 Get the state of digital input BIN0.
io get an1 Get the state of analog input AN1 on expansion port XC-CNT.
io get cnt1 Get the state of counter input CNT1 on expansion port XC-CNT.

3.2.4 User LED Interface

You can control the USR LED on the front panel of the router via the program led.

Synopsis: led [on | off]

Option Description

on User LED is on

off User LED is off

Table 4: LED Options

Programming of Router Apps 13

https://icr.advantech.com/download/application-notes#command-line-interface

3.2 Hardware Interfaces

Examples:

led on Turn on USR LED.
led off Turn off USR LED.

3.2.5 Non-volatile Memory

You can use and access the non-volatile memory, depending on the platform, see Table 5 and Table 6.
This memory is accessible in the /var/data and /opt directories of the router’s file system.

Parameter v2 v2i v2i with
eMMC

v3 v3 with
eMMC

v4 v4i

Memory type MRAM NOR eMMC MRAM eMMC eMMC eMMC

File system JFFS2 JFFS2 ext4 JFFS2 ext4 ext4 ext4

Partition size 128 KiB 2 MiB 512 MiB 128 KiB 512 MiB 512 MiB 474 MiB

Table 5: Sizes of /var/data Directory

Parameter v2 v2i v2i with
eMMC

v3 v3 with
eMMC

v4 v4i

Memory type NOR NOR eMMC NOR eMMC eMMC eMMC

File system JFFS2 JFFS2 ext4 JFFS2 ext4 ext4 ext4

Partition size 2 MiB 12 MiB 814 MiB 128 MiB 838 MiB 838 MiB 2.16 GiB

Table 6: Sizes of /opt Directory

For the size of the MRAM equal to 128 KiB, it is recommended to use maximally 64 KiB by a router
app, because the router’s operating system uses this memory, too.

Notices:

• You can fit more data into the JFFS2 file system, if the data can be compressed well.

• It is recommended to create the router app <name> subdirectory in /var/data.

• The /var/data/<name> subdirectory is deleted automatically on router app removal.

• Clean up of other files or subdirectories is up to the author of the router app.

Programming of Router Apps 14

3.2 Hardware Interfaces

3.2.6 RAM

See Table 7 for information about RAM sizes for different router platforms. You can use the standard
way of dynamic memory allocation (e.g. malloc function). Be careful regarding the memory usage – do
not deplete all the memory for your router app.

Parameter v2 routers v2i routers v3 routers v4 routers v4i routers

RAM size 64 MB 128 MB 512 MB 1 024 MB 1 024 MB

Table 7: RAM Memory Parameters

3.2.7 Storage Access – USB Flash and SD Card

Connecting the USB device or SD card works the standard way as in Linux OS. When you connect a
USB Flash stick to the router, you can see it in the /dev directory. You can use see the details on detected
devices using dmesg command.

• USB Flash stick will typically show up as /dev/sda1. You can mount it with the mount command.
(E.g. mount -t vfat /dev/sda1 /mnt).

• Some USB to serial converters are supported. These will show up as ttyUSB0, ttyUSB1 etc. devices.

• SD Card inserted in the SD card reader will on the router will show up as /dev/mmcblk0p1. You can
mount it the standard way. (E.g. mount -t vfat /dev/mmcblk0p1 /mnt.)

3.2.8 I/O Control – Lower Hardware API

You can use even lower hardware API – Unix I/O control (ioctl). This can have better performance in
some cases, but it can be harder to implement, too. Here are GPIO driver iocontrol command codes in the
table below with the Shell program alternative or close feature if available.

Variable – Action Code Input Output Shell
UM_GPIO_GET_MO1_SIM
Get index of SIM card in the first cellular module

0x80004202U 0 0 or 1 —

UM_GPIO_SET_LED_USR
Set state of LED USR

0x40004203U 0 or 1 0 led

UM_GPIO_SET_OUT0
Set state of output OUT0

0x40004206U 0 or 1 0 io

UM_GPIO_GET_OUT0
Get state of output OUT0

0x80004206U 0 0 or 1 io

UM_GPIO_GET_BIN0
Get state of input BIN0

0x80004207U 0 0 or 1 io

UM_GPIO_GET_PORT1_TYPE
Get type of expansion port 1

0x80004209U 0 Code in
Table 9

status ports

UM_GPIO_GET_PORT1_OVRL
Get information on port 1 MBUS overload

0x8000420AU 0 0 or 1 —

Continued on the next page

Programming of Router Apps 15

3.2 Hardware Interfaces

Continued from previous page

Variable – Action Code Input Output Shell
UM_GPIO_GET_PORT2_TYPE
Get type of expansion port 2

0x8000420BU 0 Code in
Table 9

status ports

UM_GPIO_GET_PORT2_OVRL
Get information on port 2 MBUS overload

0x8000420CU 0 0 or 1 —

UM_GPIO_GET_MO1_TYPE
Get type of the first module board

0x8000420EU 0 Code in
Table 10

—

UM_GPIO_GET_TEMPERATURE
Get internal temperature

0x80004211U 0 Integer num-
ber in Kelvin

status sys

UM_GPIO_GET_VOLTAGE
Get supply voltage

0x80004212U 0 Integer
number in
milli-
volts

status sys

UM_GPIO_SET_PORT1_SD
Shutdown expansion port 1

0x40004214U 0 or 1 0 —

UM_GPIO_GET_PORT1_SD
Get shutdown of expansion port 1

0x80004214U 0 0 or 1 —

UM_GPIO_SET_PORT2_SD
Shutdown expansion port 1

0x40004215U 0 or 1 0 —

UM_GPIO_GET_PORT2_SD
Get shutdown of expansion port 2

0x80004215U 0 0 or 1 —

UM_GPIO_GET_MO2_SIM
Get index of SIM card in the second module

0x80004216U 0 0 or 1 —

UM_GPIO_GET_MO2_TYPE
Get type of the second module board

0x80004219U 0 Code in
Table 10

—

UM_GPIO_GET_MOD_IDX
Get index of selected module

0x8000421AU 0 0 or 1 —

UM_GPIO_GET_BIN1
Get state of input BIN1

0x8000421BU 0 0 or 1 io

Table 8: GPIO Driver Iocontrol Command Codes

Programming of Router Apps 16

3.2 Hardware Interfaces

On GET codes – you get typically boolean output where 1 means "yes" and 0 means "no", except for
binary inputs/outputs – these have reversed logic. If an error occurs, -1 value is returned. The codes and
variables can be found in our SDK library, The variables should be named as mentioned in the table above
for proper work. There are board types on output codes in the tables below:

Output Code Variable – Port Type
0x00 UM_GPIO_PORT_TYPE_EMPTY

0x02 UM_GPIO_PORT_TYPE_RS232

0x03 UM_GPIO_PORT_TYPE_RS485

0x04 UM_GPIO_PORT_TYPE_MBUS

0x05 UM_GPIO_PORT_TYPE_CNT

0x08 UM_GPIO_PORT_TYPE_ETH

0x0A UM_GPIO_PORT_TYPE_WMBUS

0x0B UM_GPIO_PORT_TYPE_RS422

0x0F UM_GPIO_PORT_TYPE_NONE

0x11 UM_GPIO_PORT_TYPE_WIFI

0x12 UM_GPIO_PORT_TYPE_SDCARD

0x13 UM_GPIO_PORT_TYPE_DUST

0x20 UM_GPIO_PORT_TYPE_SWITCH

Table 9: GPIO Port Type Codes

Output Code Variable – Module Board Type
0x00 UM_GPIO_MODULE_TYPE_EES3

0x01 UM_GPIO_MODULE_TYPE_EU3

0x02 UM_GPIO_MODULE_TYPE_MCXXXX_VWM10

0x03 UM_GPIO_MODULE_TYPE_PHS8

0x04 UM_GPIO_MODULE_TYPE_MCXXXX

0x05 UM_GPIO_MODULE_TYPE_VWM10

0x06 UM_GPIO_MODULE_TYPE_GOBI3K

0x0A UM_GPIO_MODULE_TYPE_MCXXXX_MCXXXX

0x0F UM_GPIO_MODULE_TYPE_NONE

Table 10: GPIO Cellular Module Board Type Codes

Programming of Router Apps 17

3.3 Firewall Integration

3.3 Firewall Integration

If you want to use a TCP or UDP server in your router app (or generally any program listening on TCP
or UDP port), read this chapter carefully – there are information on how your router app should handle the
firewall in the router.

There is iptables program integrated in the router. It is used for Firewall and NAT rules processing.
There is the Send all remaining incoming packets to default server item (see Figure 3) in the NAT con-

figuration of the router (separately for IPv4 and IPv6). If enabled (and the IP address is filled in), it will
apply the Firewall and NAT rules first and the rest of incoming packets are sent to the configured default
server. It ignores the TCP/UDP port your router app is listening on. Therefore the router app should add
the iptables rules for itself during the installation process and remove them on its uninstallation. The best
way to do it is in the ’init’ script.

Figure 3: The Default Server in the NAT Configuration (for IPv4)

The example of the ’init’ script adjusting the iptables rules is shown below. There are add_chain() and
del_chain() functions and then the usual ’init’ script continues with the case switch. Note that the script
below is shortened, the rest of the parameters is skipped in this example.

The iptables rules are added in the add_chain() function so the Firewall can accept it and so the NAT
will not send it to the default server. The add_chain() function is then called by the ’init start’. It has
parameters e.g. mod_mymodule tcp 1000 as you can see from the example below. Here 1000 is the TCP
port number defined in the ’settings’ file of the router app. Now when the packet comes to TCP port 1000,
it is accepted even if there is default server set in NAT configuration of the router.

The del_chain() function is called on ’init stop’ likewise. It’s parameter is mod_mymodule as you can
see in the example below. This is to remove the iptables rules on the router app removal (or restart, or
manually on ’init stop’).

Programming of Router Apps 18

3.3 Firewall Integration

MODNAME=mymodule
MODEXEC=mymoduled

add_chain() {
/sbin/iptables -N $1 || return
/sbin/iptables -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/iptables -A in_mod -j $1
/sbin/iptables -t nat -N $1
/sbin/iptables -t nat -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/iptables -t nat -A pre_mod -j $1
if [-f /sbin/ip6tables]; then

/sbin/ip6tables -N $1 || return
/sbin/ip6tables -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/ip6tables -A in_mod -j $1
/sbin/ip6tables -t nat -N $1
/sbin/ip6tables -t nat -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/ip6tables -t nat -A pre_mod -j $1

fi
}

del_chain() {
/sbin/iptables -D in_mod -j $1
/sbin/iptables -F $1
/sbin/iptables -X $1
/sbin/iptables -t nat -D pre_mod -j $1
/sbin/iptables -t nat -F $1
/sbin/iptables -t nat -X $1
if [-f /sbin/ip6tables]; then

/sbin/ip6tables -D in_mod -j $1
/sbin/ip6tables -F $1
/sbin/ip6tables -X $1
/sbin/ip6tables -t nat -D pre_mod -j $1
/sbin/ip6tables -t nat -F $1
/sbin/ip6tables -t nat -X $1

fi
}

continue on next page

Programming of Router Apps 19

3.3 Firewall Integration

continued from previous page

case "$1" in
start)

echo -n "Starting module $MODNAME: "
. /opt/$MODNAME/etc/settings
["$MOD_EXAMPLE5_ENABLED" != "1"] && echo "skipped" && exit 0
add_chain mod_$MODNAME tcp $MOD_MYMODULE_PORT 2> /dev/null
/opt/$MODNAME/bin/$MODEXEC &
RETVAL=$?
[$RETVAL = 0] && echo "done" || echo "failed"
exit $RETVAL
;;

stop)
echo -n "Stopping module $MODNAME: "
killall $MODEXEC 2> /dev/null
del_chain mod_$MODNAME 2> /dev/null
RETVAL=$?
[$RETVAL = 0] && echo "done" || echo "failed"
exit $RETVAL
;;

*)
echo "Usage: $0 {start|stop|restart|status|defaults}"
exit 1

esac

There are in_mod and pre_mod parameters in iptables rules in functions add_chain() and del_chain().
Here is the iptables structure used in the router so you know when in_mod and pre_mod rules are applied.
Note that there is many more rules nested in the structure, but only the ones applicable for router apps are
shown in the structure below:

– mangle PREROUTING

– nat PREROUTING

– pre (WAN interfaces only)

– pre_mod - ACCEPT rules for installed router apps

– mod_...

– mod_...

– mod_...

– nat POSTROUTING

– filter INPUT

– in

– in_mod - ACCEPT rules for installed router apps

– mod_...

– mod_...

– mod_...

– filter FORWARD

Programming of Router Apps 20

3.4 Libraries and Dependency

3.4 Libraries and Dependency

To maintain the proper work of the router app after the router’s firmware update, observe these two
recommendations for libraries and dependencies:

• Do not link the libraries dynamically. Use the static link with your router app only.

• Do not use libraries from the file system of the router, except for glibc library.

The reason is that the libraries in the router’s firmware can change and vary in the updated firmware
versions. The router app should be independent on the libraries of the router’s firmware so it can work
properly after the firmware update.

If you write your router app in the C language – you can use glibc library from the router’s file system
(located in ’/lib’ directory in the router). Only use the functions up to the 2.0.6 version from glibc library. This
is to maintain the compatibility within all firmware versions since there is glibc 2.0.6 library in all versions of
the router’s firmware.

3.5 Older Firmware Compatibility

router apps are supported since firmware 2.1.2 in the router. If you want to keep your router app compatible
with all versions of the firmware, use only the functions from glibc 2.0.6 library or lower. If you do not use
glibc functions at all, there will be no compatibility issues with the router app.

If you are writing your router app for v2 routers in C++ and if you want your router app to be compatible
with firmware lower than 5.1.0, then you have to link the libstdc++ library statically with your router app. The
libstdc++ library is a part of firmware since 5.1.0 and higher.

Programming of Router Apps 21

4. CPU and Toolchains

4.1 CPU Architecture

There are CPU parameters for different router platforms listed in the Table 11.

Parameter v2 routers v2i routers v3 routers v4 routers v4i routers

CPU SPEAr320S SAM9X60 AM3352 ARMv8-A ARMv8-A

Architecture arm v5 arm 5TEJ arm v7 arm v8 arm v8

Core ARM926EJ-S ARM926EJ-S Cortex-A8 Cortex-A72 Cortex-A53

CPU power 360 DMIPS 660 DMIPS 2000 DMIPS 4.7 DMIPS/MHz 2.3 DMIPS/MHz

Table 11: CPU Architecture

4.2 Crosscompilation – Toolchains and Flags

This is applicable if you are crosscompiling the router app written in C or C++. It is recommended to
download and use toolchains offered in chapter 1.2.

You can use other crosscompiler, too. Use these flags for successful crosscompilation, based on the
router’s platform:

v2 routers – flags for crosscompilation for v2 routers:
-march = armv5te
-mtune = arm926ej-s
-mfloat-abi = soft

v3 routers – flags for crosscompilation for v3 routers:
-march = armv7-a
-mtune = cortex-a8
-mfpu = vfpv3
-mfloat-abi = softfp

v4 routers – flags for crosscompilation for v4 routers:
-march=armv8-a+crc+crypto
-mtune=cortex-a72

v4i routers – flags for crosscompilation for v4i routers:
-march=armv8-a+crc+crypto
-mtune=cortex-a53

Programming of Router Apps 22

5. Constraints

• The space in ’/opt’ directory, where router apps are stored, is limited, see Table 6 for the size of
different platforms.

• For a platform having the /var/data folder of 128 KiB size, use only 64 KiB for the smooth run of
router app and the router’s firmware. See chapter 3.2.5 for more details.

• You can load more data into the ’/opt’ directory if compressed (the amount of data depends on the
data itself – how well it can be compressed). The ’/opt’ directory is not erased during the router’s
firmware update.

Programming of Router Apps 23

6. Related Documents

You can obtain product-related documents on the Engineering Portal at icr.advantech.com.

To access your router’s documents or firmware, go to the Router Models page, locate the required model,
and select the appropriate tab below.

Documents that are common to all models and describe specific functionality areas are available on the
Application Notes page.

The Router Apps installation packages and manuals are available on the Router Apps page.

If you are interested in further options for extending router functionality, either through scripts or custom
Router Apps, please see the information available on the Development page.

Programming of Router Apps 24

https://icr.advantech.com/
https://icr.advantech.com/support/router-models
https://icr.advantech.com/download/application-notes
https://icr.advantech.com/products/software/user-modules
https://icr.advantech.com/development

	Basic Information
	Recommended Tools
	SDKs and Cross Compiler Available

	Directory Structure
	Internal Archive Structure
	Information Files in /etc Directory
	Configuration Files in /etc Directory
	Scripts in /etc Directory
	Web Interface Files in /www Directory

	Programming
	Actions – Add, Update, Delete and Scripts Call Order
	Router App Installation
	Router App Update
	Router App Uninstallation

	Hardware Interfaces
	Serial Line Interface
	Ethernet and Network Interfaces
	I/O Interface
	User LED Interface
	Non-volatile Memory
	RAM
	Storage Access – USB Flash and SD Card
	I/O Control – Lower Hardware API

	Firewall Integration
	Libraries and Dependency
	Older Firmware Compatibility

	CPU and Toolchains
	CPU Architecture
	Crosscompilation – Toolchains and Flags

	Constraints
	Related Documents

