
Application Note

Extending Router Functionality

Advantech Czech s.r.o., Sokolska 71, 562 04 Usti nad Orlici, Czech Republic
Document No. APP-0126-EN, revised on July 9, 2025.

© 2025 Advantech Czech s.r.o. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photography, recording, or any information storage and retrieval system without written consent.
Information in this manual is subject to change without notice, and it does not represent a commitment on the part of Advantech.

Advantech Czech s.r.o. shall not be liable for incidental or consequential damages resulting from the furnishing, performance,
or use of this manual.

All brand names used in this manual are the registered trademarks of their respective owners. The use of trademarks or other

designations in this publication is for reference purposes only and does not constitute an endorsement by the trademark holder.

Used symbols

Danger – Information regarding user safety or potential damage to the router.

Attention – Problems that can arise in specific situations.

Information – Useful tips or information of special interest.

Contents

1. Document Content and Structure 1

I Shell Scripting 3

2. Scripting Fundamentals 4

2.1 What Is a Script . 4
2.2 Supported Environments . 4
2.3 Writing and Executing a Script . 4
2.4 Redirecting Output and Error Streams . 5
2.5 Basic Script Example . 7
2.6 Scripts in Router GUI . 8
2.7 Scheduling Scripts with cron . 10

3. Specific Implementation Notes and Examples 11

3.1 Handling Incoming SMS with a Custom Script . 11
3.2 Email Configuration Notes . 12
3.3 Forward Incoming SMS to Email . 12
3.4 Send Email on PPP Connection Established . 14
3.5 Configure Mobile WAN via SMS . 15
3.6 Send SNMP Trap on PPP Connection Established . 17
3.7 Switch Between Ethernet WAN and Mobile WAN . 18
3.8 Executing AT Commands on Cellular Module . 21
3.9 Schedule an Automatic Daily Reboot . 23
3.10 Voltage Drop SMS Alert . 24

II Python 26

4. Python on Advantech Routers 27

4.1 Introduction to Python Support . 27
4.2 Choosing Your Python Router App . 27

4.2.1 Python 3 Router App (Full Version) . 27
4.2.2 Python 3 Lite Router App . 28
4.2.3 Comparison Summary . 28

4.3 Installing Python Router Apps . 28
4.3.1 Prerequisites . 28
4.3.2 Installation Procedure . 28
4.3.3 Verifying the Installation . 29

4.4 Accessing and Running Python . 29
4.4.1 Interactive Python Shell (REPL) . 29
4.4.2 Executing Python Scripts . 30
4.4.3 Passing Command-Line Arguments . 30
4.4.4 Introduction to Python Scripting . 31

4.5 Advanced Features . 33
4.5.1 Using pip to Install Third-Party Libraries . 33

4.5.2 Using venv for Isolated Virtual Environments . 34
4.6 Router-Specific Python Development Notes . 35

5. Practical Python Script Examples 37

5.1 Gathering System Information . 37
5.2 Basic Network Reachability Test . 40
5.3 Simple Log File Monitoring . 43

III Router Apps 46

6. Getting Started with Router Apps 47

6.1 What are Router Apps . 47
6.2 Overview of Development Approaches . 47
6.3 General Development Workflow and Tools . 48

7. Router App Structure 49

7.1 Directory Structures for Applications . 49
7.2 Application Packaging . 55
7.3 Application Lifecycles . 56

8. Building Router Apps 58

8.1 Overview of Development Tools . 58
8.2 Cross-Compiler Toolchains . 58
8.3 SDK (Software Development Kit) . 59
8.4 Building Your First Compiled Application with the SDK . 61
8.5 Core Programming for Compiled Applications . 67
8.6 Developing Scripted Router Applications (Python) . 69

9. Summary and Best Practices 74

9.1 Key Development Constraints Recap . 74
9.2 Best Practices Recap . 74
9.3 Firewall Rules for Router Apps . 75

IV Controlling Router Peripherals 78

10.Digital Input/Output Interfaces 79

10.1 io Utility . 79
10.2 Activate Binary Output via SMS . 80
10.3 Send Email on Binary Input Activation . 82
10.4 Send SNMP Trap on Binary Input State Change . 86

11.Serial Interfaces 87

11.1 Identifying Serial Interfaces . 87
11.2 Command-Line Utilities for Serial Ports . 87
11.3 Scripting Serial Communication with the um Python Module 91

12.USB Interface 96

12.1 Storage Access – USB Flash and SD Card . 96
12.2 Mounting a USB Flash Drive Partition . 96
12.3 Automount USB Flash Disk . 97
12.4 Supported USB Serial Converter Chips . 100
12.5 Using an Unsupported Serial Converter Chip . 100

13.User LED 102

13.1 led Utility . 102
13.2 Check IPsec Connection Status via LED . 103
13.3 Indicate OpenVPN Status via LED . 105

V Constraints 107

14.S1 Router Programming Considerations 108

14.1 Extending the Read-Only Root Filesystem . 108
14.2 Adding JavaScript and CSS to the S1 Web Administration Interface 108
14.3 Changing System Configuration Programmatically on S1 Routers 109

15.Hardware Constraints 110

15.1 Non-volatile Memory . 110
15.2 RAM Utilization . 110
15.3 CPU Performance Considerations . 111

VI Custom Firmware Compilation 112

16.Getting Started with Custom Firmware Compilation 113

16.1 Overview of Custom Firmware for Advantech Routers . 113
16.2 Prerequisites and Essential Knowledge . 113
16.3 Obtaining Firmware Source Code and Build System Components 113

17.Preparing the Build Environment 114

17.1 Setting Up the Development Host System . 114
17.2 Setting Up the Cross-Compilation Toolchain . 114
17.3 Configuring the Build System . 114
17.4 Understanding the Build Directory Structure . 114

18.Building the Custom Firmware Image Components 115

18.1 The Firmware Build Process: Step-by-Step . 115
18.2 Building and Integrating Open-Source Components . 115
18.3 Customizing the Linux Kernel (If Applicable) . 115
18.4 Generating and Locating Firmware Image Files . 115
18.5 Troubleshooting Common Build Issues . 116

19.Installing and Managing Custom Firmware Components 117

19.1 Methods for Installing Built Firmware Components . 117
19.2 Initial Boot-up and System Verification . 117
19.3 Important Note on Running Custom Firmware Components 118

19.4 Post-Installation Troubleshooting . 119

VII Special Router Configuration Options 120

20.Overview of Special Configuration Options 121

20.1 Special Options List . 121
20.2 How to Apply Special Options . 121
20.3 Configuration by a Script . 122

VIII Related Documents 123

List of Figures

1 Router Apps Programming Scheme . 47
2 The Default Server Option in the NAT Configuration (for IPv4) 75

List of Tables

1 Comparison of Python Router Apps . 28
2 Advantech Cross-Compiler Toolchains . 58
3 Advantech Router App SDK (ModulesSDK) . 59
4 io Utility Commands . 79
5 Common stty Options and Settings. 88
6 Supported portd options based on router’s help output. 90
7 led Utility Options . 102
8 Characteristics of the /var/data Directory Partition . 110
9 Characteristics of the /opt Directory Partition . 110
10 RAM Memory Parameters . 111
11 CPU Architecture . 111
12 Summary of Special Router Configuration Options . 121

1. Document Content and Structure

This manual introduces various methods for enhancing your Advantech router’s core functionality using
both built-in firmware capabilities and custom development approaches. Each Advantech router platform
offers a degree of extensibility, allowing users to customize and optimize its behavior for specific appli-
cations and use cases. The methods described in this document are generally structured by increasing
complexity – from simpler scripting solutions to more advanced application and firmware development –
and are grouped into the following main parts or chapters:

1. Part I Shell Scripting – Scripts are sequences of commands executed via the router’s command-line
interface (CLI). This method allows users to automate tasks, manage router operations, and extend
functionality without modifying the core system firmware. Shell scripts are often the most flexible and
immediately accessible way to add simple custom features, enabling tasks like remote management,
handling network events, or controlling basic I/O ports.

2. Part II Python – Python support on Advantech routers, typically provided via installable Python Router
Apps (Full and Lite versions), offers a powerful high-level programming language for more complex
automation, data processing, and custom application logic. It facilitates interaction with router func-
tionalities, development of sophisticated scripts, and management of third-party libraries (with pip
in the Full Python RA), providing a significant step up in capability from basic shell scripting.

3. Part III Router Apps – Router Apps (formerly known as User Modules) are self-contained software
packages. They can be developed in languages like C/C++, Python, or shell script and then installed
on the router. Router Apps provide a structured and robust way to add significant new features or
custom applications that are not available in the default firmware. They are ideal for users who need
specific, well-integrated functionality, prefer a plug-and-play solution, or need to distribute custom
features reliably.

4. Part IV Controlling Router Peripherals – This part describes how to interact with and control the
router’s various hardware interfaces. It covers utilizing the General Purpose I/O (GPIO) interfaces for
monitoring and control, managing devices connected to the USB interface (such as storage media
or serial converters), and programming user-configurable LEDs for status indication. Examples and
usage of command-line utilities like io and led for managing these peripherals are detailed.
There are also available some bash and python script examples utilizing the peripherals.

5. Part V Constraints – Standard shell scripting and general Python usage (outside of Router Apps)
are typically not supported on the S1 Router product line due to its enhanced security model which
restricts direct shell access and script execution in the main OS. To achieve custom automation or
extend functionality on S1 devices, developers must implement a custom Router App. This chapter
details S1-specific programming considerations, development workflows, and security implications.
(Part III Router Apps provides general information on Router App development).

This chapter also discusses important hardware-related constraints and considerations relevant to
application development on embedded routers. Topics include managing non-volatile memory (flash
storage) effectively, understanding RAM limitations, and considering CPU performance implications
to ensure applications run reliably without overloading the router’s resources.

6. Part VI Custom Firmware Compilation – For highly advanced use cases requiring deep integration
or modification of the router’s operating system components, compiling custom firmware (or selected
parts thereof) offers the most powerful solution. This method allows extensive control over software

Extending Router Functionality 1

behavior and feature integration. It primarily involves understanding and potentially recompiling open-
source components of the ICR-OS and requires significant knowledge of Linux, embedded systems,
firmware development, cross-compilation toolchains, and thorough testing. Users should be aware of
the significant implications regarding warranty and support when running custom firmware.

7. Part VII Special Router Configuration Options – This chapter describes advanced configuration pa-
rameters and system settings that are not typically accessible or configurable via the standard web
GUI. These options allow for fine-tuning of specific router behaviors, underlying system services, or
enabling specialized features.

Each of these methods for extending router functionality offers a different level of control, complexity, and
development effort. This manual aims to provide the necessary information for users to choose and imple-
ment the appropriate method to meet their specific requirements, whether they are beginners automating
simple tasks or experienced developers building fully custom solutions.

Extending Router Functionality 2

Part I.

Shell Scripting

Extending Router Functionality 3

2. Scripting Fundamentals

2.1 What Is a Script

For more information on writing shell scripts on Linux systems, see the Advanced Bash-Scripting Guide or
the GNU Bash Reference Manual.

Advantech routers support scripting in a manner similar to general-purpose Linux operating systems.
A script is essentially a text file containing a sequence of commands that the router’s command-line in-
terpreter (shell) can execute. Scripts allow you to automate tasks, manage router operations, and extend
functionality without modifying the router’s core firmware. They represent the simplest method for adding
custom functions.

2.2 Supported Environments

Scripts on Advantech routers are written using a POSIX-compatible shell scripting language. The default
shell invoked by /bin/sh is typically a version of ash (from BusyBox), but bash might also be
available depending on the router model and firmware version. For most common scripting tasks, the
differences between these shells are minimal when adhering to POSIX standards.

When writing scripts, you can utilize the standard set of Linux/Unix utilities provided by the BusyBox
environment. To list available built-in commands, you can run busybox --list or press the Tab
key twice in the shell. Additionally, Advantech provides several proprietary utilities specific to the router’s
hardware and functions (e.g., gsmsms , io , led , gsmat , status). Both the standard BusyBox
commands and Advantech-specific utilities are documented in the Command Line Interface application
note.

2.3 Writing and Executing a Script

File Format

Scripts should be saved as plain text files, typically with a .sh extension. It is crucial to use Unix-style
line endings (LF only) rather than Windows-style line endings (CRLF), as the latter can cause execution
errors on Linux. You can create scripts using a text editor on your PC and then transfer them to the router
(e.g., via SCP or SFTP to directories like /root or /var/data), or create them directly on the router
using built-in editors like vi , refer to Busybox vi tutorial, or the Here-Document method described below.

Shebang Line

Every script should begin with a shebang line, which specifies the interpreter that should execute the
script. The standard shebang for POSIX-compatible scripts is: #!/bin/sh

Here-Document Method

The here-document syntax provides a convenient way to embed multi-line text (like a script’s content)
directly within another script or command. This is particularly useful when defining scripts within the router’s
GUI (see Section 2.6) or when creating script files dynamically from the console.

A here-document redirects lines following a command until a specific delimiter is encountered. The
syntax is command << DELIMITER , followed by the input lines, and ending with DELIMITER on a line by
itself.

Extending Router Functionality 4

https://tldp.org/LDP/abs/html/
https://www.gnu.org/software/bash/manual/bash.html
https://icr.advantech.com/download/application-notes#command-line-interface
https://k.japko.eu/busybox-vi-tutorial.html?utm_source=chatgpt.com

2.4 Redirecting Output and Error Streams

Making the Script Executable

Before a script file can be run directly, it needs execute permissions. Use the chmod command to set
these permissions. For example, to give the owner read, write, and execute permissions, and others read
and execute permissions: chmod 755 your_script.sh Alternatively, more restrictive permissions like

chmod 700 your_script.sh (owner only) might be appropriate.

Running the Script

To execute a script located in the current directory, use its relative path: ./your_script.sh If the script

is located elsewhere, provide the full path: /path/to/your_script.sh Alternatively, you can explicitly in-

voke the shell to run the script, which doesn’t require execute permissions: sh /path/to/your_script.sh

2.4 Redirecting Output and Error Streams

Shell scripts produce output on two main streams:

• Standard Output (stdout, file descriptor 1): Used for normal program output.

• Standard Error (stderr, file descriptor 2): Used for error messages and diagnostics.

By default, both streams are displayed on the console. When running scripts non-interactively or logging
their activity, it’s often desirable to capture this output into files.

Redirecting stdout

Use the > operator to redirect stdout to a file, overwriting the file if it exists:
./your_script.sh > /path/to/logfile.log

Use >> to append stdout to the file:
./your_script.sh >> /path/to/logfile.log

Redirecting stderr

Use 2> to redirect stderr to a file:
./your_script.sh 2> /path/to/errorfile.log

Use 2>> to append stderr.

Redirecting Both stdout and stderr to the Same File

To capture all output (both normal messages and errors) in a single file, redirect stderr to the same
location as stdout using the notation 2>&1 . This must appear *after* the stdout redirection.

Syntax

./your_script.sh > /path/to/logfile.log 2>&1 (Overwrite log file)

./your_script.sh >> /path/to/logfile.log 2>&1 (Append to log file)

Extending Router Functionality 5

2.4 Redirecting Output and Error Streams

Order Matters

The order of redirections is critical. 2>&1 redirects stderr to wherever stdout is *currently* pointing.

• Correct (stdout and stderr go to file): command > file.log 2>&1

• Incorrect (stderr still goes to console): command 2>&1 > file.log (stderr is redirected to the origi-
nal stdout (console) *before* stdout is redirected to the file).

Discarding Output

To discard output, redirect it to the special null device /dev/null .

• Discard stdout: command > /dev/null

• Discard stderr: command 2> /dev/null

• Discard both: command > /dev/null 2>&1

Extending Router Functionality 6

2.5 Basic Script Example

2.5 Basic Script Example

Below is an example script, intended to be saved in a file named test.sh , that checks network
connectivity to a target host and appends a timestamped result to a log file.

#!/bin/sh
test.sh -- Check network connectivity and log status

--- Configuration ---
TARGET="8.8.8.8" # IP address or hostname to ping
LOGFILE="/var/log/network_status.log" # Path to the log file
--- End Configuration ---

Get current timestamp
TIMESTAMP=$(date +"%Y-%m-%d %H:%M:%S")

Optional: Exit immediately if any command fails
set -e

Ping the target host once (-c 1) with a timeout (e.g., -W 2 for 2 seconds)
Redirect ping's stdout and stderr to /dev/null as we only care about exit status
if ping -c 1 -W 2 "$TARGET" > /dev/null 2>&1; then

If ping succeeds (exit code 0), log UP status
echo "$TIMESTAMP: Network is UP (reachable $TARGET)" >> "$LOGFILE"

else
If ping fails (non-zero exit code), log DOWN status
echo "$TIMESTAMP: Network is DOWN (cannot reach $TARGET)" >> "$LOGFILE"

fi

Explicitly exit with success status
exit 0

To run this script, first ensure it has execute permissions, then execute it using its path (as described in
Section 2.3):

chmod +x test.sh # Or chmod 755 test.sh
./test.sh

This executes the script once, performing a single connectivity check and appending the result to $LOGFILE .
Another common approach involves running the script’s core logic within an infinite while true loop,
typically used for continuous monitoring tasks. If the script needs to run periodically at specific intervals or
at a precise time, the cron scheduling utility can be used (see Section 2.7 Scheduling Scripts with cron).

Extending Router Functionality 7

2.6 Scripts in Router GUI

2.6 Scripts in Router GUI

The router’s web interface provides dedicated sections for defining custom scripts that run automatically
in response to specific system events. Navigate to Configuration → Scripts, where you will find the following
subpages:

• Startup Script: Executed once every time the router powers on or after a factory reset. Ideal for
initial setup, configuration checks, or launching background monitoring processes.

• Up/Down IPv4 Scripts: Contains fields for an "Up" script (executed when the primary WAN IPv4
connection is established) and a "Down" script (executed when the primary WAN IPv4 connection is
lost). These scripts receive connection-specific parameters (like interface name, IP address).

• Up/Down IPv6 Scripts: Similar to IPv4 scripts, but triggered by the establishment ("Up") or loss
("Down") of the primary WAN IPv6 connection, receiving relevant IPv6 parameters.

For detailed instructions on parameters passed to Up/Down scripts and specific use cases, refer to the
Configuration Manual for your router model.

Simple GUI Script Example

Below is a syntax example for defining a simple script directly in the GUI (e.g., Startup Script). This script
executes its commands once when the corresponding event occurs.

#!/bin/sh

Define variables
PhoneNumber="+420123456789"
Message="Router event triggered SMS."

Use the variables
sms "$PhoneNumber" "$Message"

exit 0

Creating and Running a Script File via GUI Script (Here-Document)

If you need a script defined in the GUI (like the Startup Script) to create a separate, potentially more
complex script file and then execute it (possibly in the background), the Here-Document method (Section
2.3) is recommended, as shown below:

Extending Router Functionality 8

2.6 Scripts in Router GUI

#!/bin/sh
This script (run from GUI, e.g., Startup) creates and executes /tmp/script.sh

Define path for the script to be created (use RAM disk like /tmp or /var/run)
SCRIPT_PATH="/tmp/script.sh"

Use cat with a here-document (EOF) to write the script content
Note: Using 'EOF' (quoted) prevents variable expansion by *this* script.
Variables like $Num inside the heredoc will be treated literally when written.

cat > "$SCRIPT_PATH" << 'EOF'
#!/bin/sh
This is the content of the created script (/tmp/script.sh)

Define variables *within this script*
Num="+420123456789"
MessageBody="Sending SMS from background script..."

Example action: Send SMS
sms "$Num" "$MessageBody"

Add more complex logic here...

exit 0
EOF
End of here-document

Make the created script executable
chmod +x "$SCRIPT_PATH"

Execute the created script in the background
"$SCRIPT_PATH" &

exit 0 # Indicate successful completion of the startup task

Variable Expansion in Here-Documents

Note the handling of variables (like $Num) when using the here-document method:

• << EOF (Delimiter unquoted): Variables inside the here-document (e.g., $VAR) are expanded by
the outer script (the one containing the cat command) before the content is written to the file. The
value of the variable from the outer script’s context is embedded.

• << 'EOF' (Delimiter quoted): The content between 'EOF' delimiters is treated literally. Variables
(e.g., $VAR) are written as the literal string $VAR into the created file. This is generally the
desired behavior if the variable is intended to be defined or used within the created script itself, as
demonstrated in the example above.

• Escaping the dollar sign (\$VAR) when using the unquoted form (<< EOF) also prevents ex-
pansion by the outer script and achieves the same literal effect as quoting the delimiter, but using
<< 'EOF' is often considered clearer.

Extending Router Functionality 9

2.7 Scheduling Scripts with cron

2.7 Scheduling Scripts with cron

For further cron scheduling examples and advanced syntax, see crontab.guru.

The cron daemon on ICR–OS allows you to run scripts at specified times or intervals. Jobs are defined
in the system crontab file /etc/crontab . In this file, each line defines a job and follows the syntax below,
where the first five fields specify the schedule:

<minute> <hour> <day--of--month> <month> <day--of--week> <user> <command>

Schedule Field Definitions

• * (asterisk) – matches all valid values (e.g., every minute, every hour).
• m--n (range) – matches any value between m and n (inclusive).
• */s (step) – matches every s th value (e.g., */5 in the minute field means –every 5 minutes–).
• v1,v2,... (list) – matches any of the comma–separated values.

Valid value ranges

• Minute: 0--59
• Hour: 0--23
• Day of month: 1--31
• Month: 1--12
• Day of week: 0--7 (both 0 and 7 = Sunday)

Example Entries

• Every minute: * * * * * root /path/to/script.sh
• Every 5 minutes: */5 * * * * root /path/to/script.sh
• Hourly at minute 0: 0 * * * * root /path/to/script.sh
• Daily at 02:30 AM: 30 2 * * * root /path/to/script.sh
• Monthly on the 1st at midnight: 0 0 1 * * root /path/to/script.sh
• Weekly on Mondays at 03:00 AM: 0 3 * * 1 root /path/to/script.sh

Starting cron

After creating or updating /etc/crontab , start the daemon by service cron start or by crond & .
To verify it’s running you can use ps | grep cron .

Persistence Across Reboots

If /etc/crontab is reset on router reboot, ensure it is recreated in your Startup Script (Section 2.6 Scripts
in Router GUI). For example, the startup script may look like this:

#!/bin/sh
WARNING: This overwrites the entire crontab. See AttentionBox in Sec 2.7.1.
cat << 'EOF' > /etc/crontab
*/15 * * * * root /path/to/script.sh
Add other required system or application cron jobs here
EOF
crond &

Extending Router Functionality 10

https://crontab.guru

3. Specific Implementation Notes and Ex-
amples

3.1 Handling Incoming SMS with a Custom Script

This section describes an option for handling incoming SMS messages received by the router using
a custom script. This is achieved using a script located at /var/scripts/sms .

This file path (/var/scripts/sms) resides within the router’s volatile RAM filesystem. This means
the script file and its contents will be lost upon router reboot or power loss.

To ensure the custom SMS handling logic persists across reboots, the /var/scripts/sms script must
be recreated each time the router starts. A common method is to use the router’s Startup Script functionality.
Add a code block similar to the following to the Startup Script configuration page (Configuration → Scripts
→ Startup Script) to automatically create the /var/scripts/sms file at boot:

#!/bin/sh
Create /var/scripts/sms using a here-document in the Startup Script
cat << 'EOF' > /var/scripts/sms
#!/bin/sh
This is the custom SMS handler script /var/scripts/sms
Insert your SMS-handling logic below
Example: Log received SMS details
logger -t sms_handler "SMS received. Authorized: $1, Sender: $2, Text: $3 $4 $5 $6 $7 $8 $9"

Add custom actions based on sender ($2) and message content ($3-$9) here...

exit 0
EOF

When an SMS message is received and this feature is enabled (see InfoBox below), the system executes
the /var/scripts/sms script, passing the following parameters:

• $0 – The name of the script being executed (always sms), set automatically by the shell.

• $1 – A flag indicating if the sender’s phone number matches one of the numbers configured in the
Phone Number x fields within the router’s SMS settings GUI (1 for a match, 0 otherwise).

• $2 – The sender’s mobile phone number (MSISDN).

• $3 . . . $9 – The first seven words (space-separated tokens) extracted from the body of the
received SMS message.

Within your /var/scripts/sms script, you can use these positional parameters ($1 through $9) to
implement custom actions based on the sender and content of the SMS. This allows for creating custom
SMS commands, for example, to query router status, toggle interfaces, or trigger specific application logic.

Extending Router Functionality 11

3.2 Email Configuration Notes

• To enable the execution of the /var/scripts/sms script:

◦ Cellular connection must be properly configured and enabled under Configuration → Mobile
WAN.

◦ The Enable remote control via SMS option must be checked under Configuration → Services →
SMS.

◦ Configuring specific Phone Number x entries on Services� SMS page is optional for enabling
the script itself but affects the value of the $1 parameter.

• Precedence Rule: If a Phone Number x is configured and matches the sender’s number, and
the received SMS message matches the format of one of the router’s built-in SMS control com-
mands (e.g., get ip , reboot), the built-in command will be executed instead of the custom

/var/scripts/sms script. The custom script is bypassed in this scenario.

• The /var/scripts/sms file generally does not require execute permissions.

• If you need to determine the phone number (MSISDN) of the SIM card currently installed in the router,
you can find it by sending an SMS message from the router using the Administration → Send SMS
page to another phone.

3.2 Email Configuration Notes

To send emails from your router, you need to configure an SMTP server at Configuration → Services
→ SMTP. Ensure the email service is accessible and functional; you may need to properly configure the
firewall and NAT settings to allow outgoing SMTP traffic.

You can send a test email from the console by issuing this command:

email -t address@domain.ext -s "Test from router" -m "Just testing email functionality."

3.3 Forward Incoming SMS to Email

This script relies on the custom SMS handling mechanism (Chapter 3.1 Handling Incoming SMS with
a Custom Script) and requires a correctly configured SMTP server (Configuration → Services → SMTP).

This example script uses the custom SMS handler (/var/scripts/sms) to automatically forward de-
tails of every incoming SMS message to a specified email address.

Startup Script

This script creates the /var/scripts/sms handler script in RAM at boot time.

Extending Router Functionality 12

3.3 Forward Incoming SMS to Email

#!/bin/sh

Create the SMS handler script in RAM
cat > /var/scripts/sms << 'EOF'
#!/bin/sh

Specify email address
EMAIL="john.doe@email.com"

Forward incoming SMS via email
email -t "$EMAIL" \

-s "Received SMS from $2" \
-m "Authorized: $1, Text: $3 $4 $5 $6 $7 $8 $9"

EOF

How It Works

• The Startup Script uses cat > ... << EOF to create the handler script /var/scripts/sms .

• Inside the handler script:

◦ EMAIL="john.doe@email.com" : Defines the recipient email address.

◦ The email utility is called to send the message.

◦ -t "$EMAIL" : Sets the recipient address.

◦ -s "Received SMS from $2" : Sets the subject line, including the sender’s phone number
($2).

◦ -m "Authorized: $1, Text: $3 $4 $5 $6 $7 $8 $9" : Sets the message body, including:

* The authorization flag ($1): 1 if the sender is in the router’s authorized list, 0 other-
wise.

* The sender’s phone number ($2) is included in the subject.

* The first seven words of the SMS text ($3 through $9).

• This script forwards details of every incoming SMS, regardless of sender or content, to the specified
email address.

The standard SMS handler mechanism might only provide the first 7 words of the SMS text ($3
through $9). Longer messages may be truncated in the forwarded email.

Extending Router Functionality 13

3.4 Send Email on PPP Connection Established

3.4 Send Email on PPP Connection Established

Make sure you have correctly configured the SMTP server in Configuration → Services → SMTP. Refer to
Section 3.2 Email Configuration Notes.

This script sends an informational email when a PPP (Point-to-Point Protocol) connection for the WAN
interface is established. It can be related to IPv4 or IPv6 addressing, depending on where the script is
placed in the router’s GUI: either in the Up script IPv4 field or the Up script IPv6 field under Configuration
→ Scripts.

IPv4 Up Script

This script should be placed in the Up script IPv4 field.

#!/bin/sh

Specify email address
Specify email address
EMAIL=john.doe@email.com

Send email using parameters passed by the system
$1 = interface name (e.g., ppp0)
$4 = assigned IPv4 address
email -t $EMAIL \
-s "Router has established IPv4 PPP connection." \
-m "Interface: $1; IP address: $4"

How It Works

• The script defines the destination email address in the EMAIL variable.

• When the PPP interface establishes an IPv4 connection, the router executes this script, passing
several parameters. This script uses:

◦ $1 – the name of the network interface (e.g., ppp0).

◦ $4 – the IP address assigned to the interface.

• The email utility (typically located at /usr/bin/email) is called to send the notification:

◦ -t $EMAIL - specifies the recipient’s email address.

◦ -s "..." - sets the subject line of the email, including the interface name.

◦ -m "..." - sets the message body, including the interface name and assigned IP address
passed as parameters.

An example of a received email based on the script above:

Subject: Router has established IPv4 PPP connection on ppp0
Content: Interface: ppp0; IP address: 192.0.2.100

Extending Router Functionality 14

3.5 Configure Mobile WAN via SMS

3.5 Configure Mobile WAN via SMS

This script relies on the custom SMS handling mechanism described in Section 3.1 Handling Incoming
SMS with a Custom Script. Ensure that mechanism is active and properly configured.

This example demonstrates the implementation of a new SMS command, which can set the Network
type and the Default SIM card for the mobile WAN configuration. The command which should be sent by
SMS to the router has the following syntax:

PPP <NetworkType> <DefaultSIM>

Where:

• <NetworkType> specifies the desired network technology. Valid options (depending on router model
support) are:

◦ AUTO : Switches Network Type of both SIM cards to automatic selection.

◦ GPRS : Switches Network Type of both SIM cards to GPRS/EDGE.

◦ UMTS : Switches Network Type of both SIM cards to UMTS/HSPA.

◦ LTE : Switches Network Type of both SIM cards to LTE.

◦ NR5G : Switches Network Type of both SIM cards to NR5G.

• <DefaultSIM> specifies the default SIM card:

◦ If equal to 1 , sets SIM 1 as default.

◦ If equal to 2 , sets SIM 2 as default.

Example SMS: PPP LTE 1 (Sets network type to LTE for both SIMs and makes SIM 1 the default).

How It Works (script on next page)

• The startup script (shown on the next page) creates the /var/scripts/sms handler script in the

router’s RAM filesystem using a here-document (cat > ... << EOF). This ensures the handler
exists after a reboot.

• The handler script (/var/scripts/sms) is executed by the system when an SMS is received.

• It first checks if the sender is authorized by verifying if the first parameter $1 is equal to 1 .

• If authorized, it checks if the third word of the SMS ($3) is "PPP" (case-sensitive in the example
script).

• If the command word matches, the script processes the fourth word ($4 , network type) and fifth
word ($5 , default SIM).

• NetworkType: Based on the value of $4 ("AUTO", "GPRS", etc.), a series of if/elif statements
selects the appropriate sed command. This command modifies the /etc/settings.ppp file in

place (-i), updating the PPP_NETTYPE= and PPP_NETTYPE2= lines with the corresponding
numeric code (0 for AUTO, 1 for GPRS, 2 for UMTS, 3 for LTE, 8 for NR5G).

• DefaultSIM: Similarly, if $5 is "1" or "2", another sed command updates the PPP_DEFAULT_SIM=
and PPP_BACKUP_SIM= lines in /etc/settings.ppp .

• Reboot: After potentially modifying the settings file, the script immediately executes the reboot
command to apply the changes.

Extending Router Functionality 15

3.5 Configure Mobile WAN via SMS

Startup Script

#!/bin/sh

Create the SMS handler script in RAM
cat > /var/scripts/sms << EOF
#!/bin/sh
if ["\$1" = "1"]; then

if ["\$3" = "PPP"]; then
if ["\$4" = "AUTO"]; then

sed -e "s/\(PPP_NETTYPE=\).*/\10/" \
-e "s/\(PPP_NETTYPE2=\).*/\10/" \
-i /etc/settings.ppp

elif ["\$4" = "GPRS"]; then
sed -e "s/\(PPP_NETTYPE=\).*/\11/" \

-e "s/\(PPP_NETTYPE2=\).*/\11/" \
-i /etc/settings.ppp

elif ["\$4" = "UMTS"]; then
sed -e "s/\(PPP_NETTYPE=\).*/\12/" \

-e "s/\(PPP_NETTYPE2=\).*/\12/" \
-i /etc/settings.ppp

elif ["\$4" = "LTE"]; then
sed -e "s/\(PPP_NETTYPE=\).*/\13/" \

-e "s/\(PPP_NETTYPE2=\).*/\13/" \
-i /etc/settings.ppp

elif ["\$4" = "NR5G"]; then
sed -e "s/\(PPP_NETTYPE=\).*/\18/" \

-e "s/\(PPP_NETTYPE2=\).*/\18/" \
-i /etc/settings.ppp

fi

if ["\$5" = "1"]; then
sed -e "s/\(PPP_DEFAULT_SIM=\).*/\11/" \

-e "s/\(PPP_BACKUP_SIM=\).*/\12/" \
-i /etc/settings.ppp

elif ["\$5" = "2"]; then
sed -e "s/\(PPP_DEFAULT_SIM=\).*/\12/" \

-e "s/\(PPP_BACKUP_SIM=\).*/\11/" \
-i /etc/settings.ppp

fi

reboot
fi

fi
EOF

Extending Router Functionality 16

3.6 Send SNMP Trap on PPP Connection Established

3.6 Send SNMP Trap on PPP Connection Established

Make sure you have correctly configured the SNMP manager in Configuration → Services → SNMP.

This script sends an SNMP trap to the configured SNMP manager when the PPP (Point-to-Point Protocol)
connection for the WAN interface is established. It can be related to IPv4 or IPv6 addressing, depending
on where the script is placed in the router’s GUI (Up script IPv4 or Up script IPv6).

IPv4 Up Script

Place this script in the Up script IPv4 field.

#!/bin/sh

Specify SNMP manager address
SNMP_MANAGER=192.168.1.2

snmptrap -g 3 $SNMP_MANAGER

How It Works

• The script defines the destination IP address of the SNMP manager in the SNMP_MANAGER variable.

• When the PPP interface establishes an IPv4 connection, the router executes this script.

• The snmptrap utility sends a generic SNMP trap message:

– -g 3 specifies sending a standard generic trap of type linkUp (numeric value 3). This
indicates that a network interface has come up.

– $SNMP_MANAGER provides the IP address where the trap should be sent.

• The configured SNMP manager receives this generic linkUp trap and can process it based on its

rules. The trap itself, using only -g 3 , does not contain specific information about which interface
came up or its IP address. More complex snmptrap commands would be needed to include such
details as variable bindings.

Extending Router Functionality 17

3.7 Switch Between Ethernet WAN and Mobile WAN

3.7 Switch Between Ethernet WAN and Mobile WAN

This script enables automatic switching between a primary Ethernet WAN connection (assumed to be
eth1) and a backup Mobile WAN (PPP) connection. The PPP connection becomes active when ping

tests to a defined IP address fail, indicating that the primary WAN connection is unavailable. When the
primary WAN recovers, it switches back.

This script makes assumptions about network interfaces, configuration files (/etc/settings.eth),
and requires careful adaptation to your specific network setup and router model. Directly manipulating
routes and firewall rules requires caution.

Startup Script

#!/bin/sh

Specify IP addresses
WAN_PING=192.168.2.1
WAN_GATEWAY=192.168.2.1
WAN_DNS=192.168.2.1

. /etc/settings.eth

/sbin/route add $WAN_PING gw $WAN_GATEWAY
/sbin/iptables -t nat -A PREROUTING -i eth1 -j napt
/sbin/iptables -t nat -A POSTROUTING -o eth1 -p ! esp -j MASQUERADE

LAST=1
while true
do

ping -c 1 $WAN_PING
PING=$?
if [$PING != $LAST]; then

LAST=$PING
if [$PING = 0]; then

/etc/init.d/ppp stop
sleep 3
/sbin/route add default gw $WAN_GATEWAY
echo "nameserver $WAN_DNS" > /etc/resolv.conf
/usr/sbin/conntrack -F
/etc/scripts/ip-up - - - $ETH2_IPADDR

else
/etc/scripts/ip-down - - - $ETH2_IPADDR
/usr/sbin/conntrack -F
/sbin/route del default gw $WAN_GATEWAY
/etc/init.d/ppp start

fi
fi
sleep 1

done

Extending Router Functionality 18

3.7 Switch Between Ethernet WAN and Mobile WAN

How It Works

• The script defines IP addresses for ping testing (WAN_PING), the primary WAN gateway (WAN_GATEWAY),
and DNS (WAN_DNS). These likely need customization.

• . /etc/settings.eth : Sources variables from the Ethernet settings file (e.g., $ETH2_IPADDR
used later, assuming this relates to the primary WAN interface eth1). The exact contents and
relevance of this file depend on the router configuration.

• Initial Network Setup

– Adds a static route for the WAN_PING target via the WAN_GATEWAY . This ensures ping tests
go through the correct interface when the primary WAN is assumed to be up initially.

– Adds iptables NAT rules for the eth1 interface. The PREROUTING rule uses -j napt
, which is non-standard (standard Linux typically uses -j DNAT targets here if needed). The

POSTROUTING rule enables standard MASQUERADE (Source NAT) for outgoing traffic on
eth1 , excluding ESP protocol packets (common for VPN passthrough). The effectiveness

of -j napt depends on its implementation in the router’s firmware.

• Monitoring Loop:

– LAST=1 : Initializes the state variable assuming the connection is initially down (non-zero ping
status), ensuring the script potentially triggers a switch on the first successful ping if the WAN is
already up at boot.

– while true : Enters an infinite loop for continuous monitoring.

– ping -c 1 $WAN_PING : Sends one ping packet to the target address.

– PING=$? : Captures the exit status of the ping command (0 for success, non-zero for failure).

– if [$PING != $LAST] : Checks if the connectivity status has changed since the last check.
This edge-triggered approach prevents actions from repeating every second if the state remains
stable.

* LAST=$PING : Updates the stored status for the next comparison.

* If WAN came UP (PING = 0): Executes commands to switch back to the primary Ethernet
WAN.

· /etc/init.d/ppp stop : Stops the Mobile WAN (PPP) connection.

· sleep 3 : Pauses briefly to allow the PPP connection to terminate cleanly.

· /sbin/route add default gw $WAN_GATEWAY : Adds the default route via the primary
WAN gateway.

· echo "nameserver $WAN_DNS" > /etc/resolv.conf : Sets the DNS server configu-
ration to use the primary WAN’s DNS.

· /usr/sbin/conntrack -F : Flushes the connection tracking table to remove poten-
tially stale entries related to the PPP connection.

· /etc/scripts/ip-up ... : Executes the standard system IP-up script, potentially for

the Ethernet interface (eth1). The parameters passed (eth1 , $ETH2_IPADDR ,
etc.) are examples and depend on what the actual ip-up script expects.

* If WAN went DOWN (PING != 0): Executes commands to switch to the backup Mobile
WAN (PPP) connection.

· /etc/scripts/ip-down ... : Executes the standard system IP-down script for the
Ethernet interface.

· /usr/sbin/conntrack -F : Flushes connection tracking.
Extending Router Functionality 19

3.7 Switch Between Ethernet WAN and Mobile WAN

· /sbin/route del default gw $WAN_GATEWAY : Removes the default route via the pri-
mary WAN gateway.

· /etc/init.d/ppp start : Starts the Mobile WAN (PPP) connection. The PPP dae-
mon is typically configured to establish its own default route and DNS settings when it
connects successfully.

– sleep 1 : Pauses for 1 second before the next ping check. Adjust this value to balance
responsiveness and system load.

Extending Router Functionality 20

3.8 Executing AT Commands on Cellular Module

3.8 Executing AT Commands on Cellular Module

Advantech routers utilize a cellular (GSM/LTE/5G) module for mobile network connectivity, which is a pri-
mary function. While the router’s firmware handles most module settings for reliable operation, direct
interaction via AT commands is possible using specific methods for monitoring or advanced configuration.

This section describes methods for sending AT commands directly to the router’s cellular module.

AT-SMS Protocol

The AT-SMS protocol refers to a private set of AT commands supported by the routers, allowing direct
access to the cellular module via SMS. This can be used for tasks like sending SMS messages or querying
module status and settings remotely. Configuration related to SMS handling via AT commands can be found
in the GUI under Configuration → Services → SMS. You can also refer to the AT Commands (AT-SMS)
Application Note for details on the specific command syntax.

The gsmat Command (Non-exclusive Access)

For monitoring the cellular module or executing basic AT commands without disrupting the router’s pri-
mary mobile connection, the gsmat command is provided.

Usage

Connect to the router via SSH or Telnet and execute gsmat followed by the desired AT command
string.

Get module information
gsmat ATI

List all SMS messages (double quotes escaped)
gsmat AT+CMGL=\\\"ALL\\\"

List all SMS messages (alternative: single quotes)
gsmat 'AT+CMGL="ALL"'

Notes on gsmat

• This provides "Non-exclusive access", meaning the router’s firmware continues managing the mobile
connection simultaneously.

• It is primarily intended for monitoring. Modifying critical module settings via gsmat is generally not
recommended as it might conflict with the firmware’s management.

• Special characters within the AT command string, such as double quotes ("), dollar signs ($),
and semicolons (;), must be properly escaped with backslashes (\) or the entire AT command
string should be enclosed in single quotes (') to prevent interpretation by the shell.

Extending Router Functionality 21

https://icr.advantech.com/download/application-notes#commands-sms

3.8 Executing AT Commands on Cellular Module

Exclusive Access

For advanced diagnostics or configuration requiring full control over the module, "Exclusive access"
can be used. This method temporarily stops the router’s mobile network management, allowing direct,
unimpeded communication with the module.

Exclusive access stops the router’s primary mobile connectivity and is intended for expert users
familiar with AT commands and potential consequences. Improper use can disrupt network service
or require a router reboot. Advantech may not provide support for issues arising from the use of
exclusive access.

Steps for Exclusive Access

1. Connect to the router via SSH or Telnet.

2. Stop the Mobile WAN service (PPP daemon):

service ppp stop

3. Start the TCP/USB proxy (portd) to forward a TCP port to the module’s serial device. The specific

TTY device (/dev/ttyUSB8 , /dev/ttyS2 , /dev/ttyACM8 , etc.) varies depending on the router

model and cellular module. You can use dmesg to identify the correct port. Port 8000 is used in
this example.

Example using common port /dev/ttyUSB8 and TCP port 8000
portd -c /dev/ttyUSB8 -t 8000 &

4. Connect to the specified TCP port (e.g., 8000) using a Telnet client or similar tool from your computer
or another process on the router.

Example connecting from the router itself
telnet localhost 8000

5. Once connected via TCP, you can send AT commands directly to the module and view the responses.

6. Exclusive Access (portd): When finished, stop the portd process (e.g., using killall portd)

and restart the Mobile WAN service (service ppp start) to restore normal router operation.

How It Works Summary

• Non-exclusive Access (gsmat): Sends a single AT command to the module via a firmware interme-
diary, allowing basic queries without disrupting the main connection. Requires careful shell escaping.

• Exclusive Access (portd): Stops the router’s mobile connection management, runs a proxy daemon
(portd) to link the module’s serial port directly to a TCP port, allowing raw, interactive AT command
communication via a TCP client. Requires manual steps to stop/start services and identify the correct
serial port.

Extending Router Functionality 22

3.9 Schedule an Automatic Daily Reboot

3.9 Schedule an Automatic Daily Reboot

This script uses the cron scheduling daemon to schedule an automatic router reboot at a specific time
each day. See Section 2.7 Scheduling Scripts with cron for more details on cron .

This example configures the router to automatically reboot daily at 23:55 (11:55 PM).

Startup Script

Place this script in the Startup Script section of the GUI. It adds the reboot job to the system’s crontab
when the router boots.

#!/bin/sh

echo "55 23 * * * root /sbin/reboot" > /etc/crontab
service cron start

How It Works

• echo "55 23 * * * root /sbin/reboot" > /etc/crontab : This command overwrites the main
system crontab file (/etc/crontab).

◦ 55 23 * * * : Defines the schedule: 55th minute, 23rd hour (11:55 PM), every day, month,
and day of the week.

◦ root : Specifies the user account under which the command should run.

◦ /sbin/reboot : The command to execute.

Overwriting /etc/crontab directly is generally discouraged as it removes any other system
jobs. A safer approach is to add jobs to user-specific crontabs (e.g., in /etc/crontabs/root)
or use a drop-in directory like /etc/cron.d/ if supported by the router’s cron implementa-
tion.

• service cron start : Attempts to start or restart the cron daemon using the service utility.
This is necessary for cron to recognize the new schedule in the crontab file. The exact command
to manage the cron service might vary (crond, busybox crond, etc.).

• Once active, the cron daemon will execute /sbin/reboot daily at 23:55.

Extending Router Functionality 23

3.10 Voltage Drop SMS Alert

3.10 Voltage Drop SMS Alert

• This script monitors the router’s supply voltage and sends an SMS alert if the voltage drops below
a specified threshold.

• This functionality is only supported by router models capable of measuring supply voltage (Check
GUI: Status → System Information → Supply Voltage).

• It uses the router’s proprietary utilities (status, led, gsmsms) and should be placed in the Startup
Script to run automatically after boot.

• Adjust the voltage threshold (Umin) and recipient phone number (Num) variables as needed.

This example demonstrates how to receive an SMS notification when the supply voltage falls below
a specific level.

Startup Script

Place this script in the Startup Script section of the GUI.

#!/bin/sh

mkdir -p /var/voltaged

cat > /var/voltaged/voltaged << EOF
#!/bin/sh

Specify these power supply threshold
Umin=16.3
Specify phone number
Num=+420123456789

old=0
while true

do
Uget=\$(status sys | awk '/^Supply Voltage/ { print \$4 }')

if ["\$(echo "\$Uget \$Umin" | awk '{print (\$1 < \$2)}')" -eq 1]; then
if [\$old -eq 0]; then

led on
sms \$Num "Low voltage! Voltage is only \$Uget V!"
old=1

fi
else

led off
old=0

fi
sleep 5

done
EOF

chmod +x /var/voltaged/voltaged
sleep 60 # Let establisch MWAN connection
/var/voltaged/voltaged &

Extending Router Functionality 24

3.10 Voltage Drop SMS Alert

How It Works

• The Startup Script first creates a directory (/var/voltaged) to hold the monitoring daemon script.

• It defines the minimum voltage threshold (Umin) and the recipient phone number (Num).

• A here-document is used to write the actual monitoring logic into the /var/voltaged/voltaged file.

• Inside the monitoring script (voltaged):

◦ An infinite loop (while true) runs continuously.

◦ status sys | awk '/^Supply Voltage/ print $4 ' : Retrieves the system status and

uses awk to extract the voltage value (the 4th field on the relevant line).

◦ A basic check ensures a voltage value was actually retrieved.

◦ echo "$current_voltage $UMIN_DAEMON" | awk '{print ($1 < $2)}' : Performs a floating-

point comparison using awk to check if the current voltage is less than the threshold. awk prints
1 if true, 0 if false.

◦ If Voltage is Low (is_low is 1):

* It checks if an alert has already been sent (alert_sent is 0).

* If no alert was sent, it logs the low voltage event, turns the USR LED on (led on), sends
an SMS using the sms command, and sets alert_sent to 1 to prevent repeated SMS
for the same low-voltage event.

◦ If Voltage is OK (is_low is 0):

* It checks if an alert *was* previously sent (alert_sent is 1).

* If so, it logs the recovery, turns the USR LED off (led off), and resets alert_sent to
0, allowing a new alert if the voltage drops again later.

◦ sleep 5 : The script pauses for 5 seconds before the next voltage check.

• The Startup Script makes the daemon script executable (chmod +x).

• It includes a sleep 60 to wait for the system (especially the Mobile WAN connection needed for
SMS) to potentially initialize before starting the monitoring.

• Finally, it launches the voltaged script in the background (&).

Extending Router Functionality 25

Part II.

Python

Extending Router Functionality 26

4. Python on Advantech Routers

This chapter describes how to install and utilize Python on Advantech routers by leveraging Python
Router Apps (RAs). Python extends the router’s capabilities, enabling custom scripting, automation, data
processing, and more.

4.1 Introduction to Python Support

Python is a versatile and powerful high-level programming language known for its readability and exten-
sive libraries. On Advantech routers, Python support is provided through installable Router Apps, trans-
forming your router into a more flexible and programmable device. This allows for:

• Automation of router management tasks.

• Custom data collection and analysis directly on the edge.

• Development of IoT solutions and integrations.

• Enhanced network monitoring and diagnostics.

Two versions of the Python Router App are available to cater to different needs and resource constraints,
as detailed in the next section.

4.2 Choosing Your Python Router App

Advantech offers two distinct Python Router Apps. Understanding their differences is key to selecting the
appropriate one for your requirements.

4.2.1 Python 3 Router App (Full Version)

The Python 3 Router App delivers a full-featured Python 3 environment, empowering your router with
advanced development tools. This version includes:

• pip : The Python package installer, allowing you to easily install and manage third-party libraries
from the Python Package Index (PyPI).

• Native hashlib : Provides faster cryptographic operations as it utilizes underlying C libraries, ben-
eficial for performance-sensitive tasks involving hashing.

• Full UNICODE support: Essential for applications dealing with international character sets and di-
verse text data.

• venv : The standard tool for creating lightweight, isolated virtual environments, allowing you to
manage dependencies for different projects separately.

This version transforms the router into a powerful platform suitable for complex network automation, data
analysis, and sophisticated IoT solutions. It is ideal for developers who need a robust and flexible Python
environment and where router resources (CPU, RAM, storage) are sufficient.

Extending Router Functionality 27

4.3 Installing Python Router Apps

4.2.2 Python 3 Lite Router App

The Python 3 Lite Router App provides a lightweight Python 3 runtime, optimized for routers with limited
resources or for scenarios where a minimal footprint is critical. Key features:

• Core Python functionality: Retains the essential Python 3 features for scripting and automation.

• No pip : This version does not include the pip package installer. Third-party libraries must be
manually managed if needed, or pure-Python libraries can be bundled with your scripts.

• Limited UNICODE support: UNICODE support might be limited compared to the full version, which
could be a consideration for applications processing diverse text.

• Pure-Python hashlib : Uses a pure-Python implementation of hashlib . While fully functional,
it may be slower for intensive cryptographic operations compared to the native version. This ensures
compatibility and reduces dependencies in constrained environments.

The Lite version is best suited for simpler tasks such as log parsing, basic device monitoring, or straightfor-
ward automation scripts where minimal system impact and resource usage are paramount.

4.2.3 Comparison Summary

The table below summarizes the key differences between the two Python Router Apps:

Feature Python 3 Router App Python 3 Lite Router App
Python Version Python 3.x Python 3.x

pip Included Not Included

hashlib Native (faster) Pure-Python (compatible)

UNICODE Support Full Limited

venv Included Not Included

Resource Usage Higher Lower

Ideal Use Case Complex tasks, development Simple tasks, resource-constrained

Table 1.: Comparison of Python Router Apps

4.3 Installing Python Router Apps

Python is installed on Advantech routers by installing the appropriate Python Router App package.

4.3.1 Prerequisites

Before installing a Python Router App, please ensure:

• Sufficient Storage Space: Python and its libraries can consume significant storage. Available disk
space can be checked in the Router App GUI.

• Internet Connectivity (Optional): If you plan to use pip (with the full Python 3 Router App) to
download packages, the router will need internet access. The Router App package itself might be
obtained via download or provided by Advantech.

4.3.2 Installation Procedure

To install Python 3 or Python 3 Lite, follow the instructions in the Configuration Manual, section Cus-
tomization → Router Apps.Extending Router Functionality 28

https://icr.advantech.com/products/software/user-modules#python-3
https://icr.advantech.com/products/software/user-modules#python-3-lite

4.4 Accessing and Running Python

4.3.3 Verifying the Installation

Once installed, you can verify that Python is available and running correctly:

1. Access the router’s command-line interface (CLI).

2. Type the command to check the Python version:

python3 --version

This should output the installed Python version, e.g., Python 3.x.y .

3. (Optional, for Full Python 3 RA) Test pip :

pip3 --version

4. (Optional) Try to import a standard module like hashlib within Python:

python3 -c "import hashlib; print(hashlib)"

This should print information about the hashlib module.

If these commands execute without error, Python is ready to use.

4.4 Accessing and Running Python

You can interact with Python on the router in two primary ways: through the interactive Python shell or
by executing Python scripts.

4.4.1 Interactive Python Shell (REPL)

The Read-Eval-Print Loop (REPL) allows you to type Python code directly and see immediate results.
This is useful for testing small snippets of code or exploring Python features.

1. Log in to the router’s CLI.

2. Start the Python 3 interpreter: python3

You should see the Python prompt (>>>).

3. You can now type Python commands:

>>> print("Hello from Advantech Router!")
Hello from Advantech Router!
>>> a = 10
>>> b = 20
>>> print(a + b)
30
>>> import os
>>> os.uname()
(system information will be displayed here)

4. To exit the Python REPL, type:

>>> exit()
Or press Ctrl-D .

Extending Router Functionality 29

4.4 Accessing and Running Python

4.4.2 Executing Python Scripts

For more complex tasks, you will write Python code into .py files and execute them as scripts.

Creating/Transferring Scripts:

• Using vi : You can create or edit scripts directly on the router using the vi text editor:
vi myscript.py , refer to Busybox vi tutorial.

• Transferring Scripts: You can write scripts on your development computer and transfer them to the
router using scp (Secure Copy Protocol) or by mounting a USB drive. Example using scp from

your computer to the router’s /tmp directory: scp myscript.py admin@ROUTER_IP_ADDRESS:/tmp/ .

Note that the /tmp directory is deleted upon router restart.

Script Structure and Execution:

1. Shebang Line (Recommended): Start your script with a "shebang" line to specify the interpreter.
This allows the script to be executed directly.

#!/usr/bin/python3

Your Python code follows
print("This is my Python script.")

2. Make the script executable:

chmod +x /path/to/your/myscript.py

3. Run the script: If you used a shebang line and made the script executable:

You can always run it by explicitly calling the Python interpreter:

python3 /path/to/your/myscript.py

4.4.3 Passing Command-Line Arguments

You can pass arguments to your Python scripts from the command line. These are accessible within
Python via the sys.argv list. Here’s an example script

myscript_args.py :

#!/usr/bin/python3
import sys

print(f"Script name: {sys.argv[0]}")
if len(sys.argv) > 1:

print(f"First argument: {sys.argv[1]}")
if len(sys.argv) > 2:

print(f"Second argument: {sys.argv[2]}")

To run this script with arguments, execute:
python3 myscript_args.py arg1 "another argument"

Extending Router Functionality 30

https://k.japko.eu/busybox-vi-tutorial.html?utm_source=chatgpt.com

4.4 Accessing and Running Python

The output of this script will be:

Script name: myscript_args.py
First argument: arg1
Second argument: another argument

4.4.4 Introduction to Python Scripting

This section provides a very brief overview of Python concepts particularly relevant for scripting. It is not
a comprehensive Python tutorial. For in-depth learning, please refer to the official Python documentation
at https://docs.python.org/3/ .

Core Concepts:

• Variables and Data Types:

◦ Strings: my_string = "hello"

◦ Numbers: Integers (count = 10), Floats (pi = 3.14)

◦ Lists: Ordered collections, mutable. my_list = [1, "two", 3.0]
◦ Dictionaries: Key-value pairs, unordered, mutable.

my_dict = {"name": "router", "ip": "192.168.1.1"}

◦ Booleans: True , False

• Control Flow:

◦ Note the code block definition by indentation (usually 4 spaces).

◦ if/elif/else : Conditional execution.

if status == "up":
print("System is operational.")

elif status == "down":
print("System is down!")

else:
print("Status unknown.")

◦ for loops: Iterate over sequences.

for item in my_list:
print(item)

◦ while loops: Repeat as long as a condition is true.

count = 0
while count < 5:

print(count)
count += 1

Extending Router Functionality 31

https://docs.python.org/3/

4.4 Accessing and Running Python

• Functions: Define reusable blocks of code (note the indentation).

def greet(name):
print(f"Hello, {name}!")

greet("Advantech User")

• Importing Modules: Use Python’s extensive standard library or third-party modules.

import os
import subprocess
import sys
import re
import datetime
import socket
import json

print(os.name)
print(sys.version)

For the full Python RA, you might import libraries installed via pip
import requests

Standard Library Modules for Scripting:
Here are examples of some standard library modules preinstalled with Python on the router:

• os : Interacting with the operating system (e.g., os.system() , os.environ , file system opera-
tions).

• subprocess : Recommended for running external shell commands and managing their input/output,

especially in BusyBox environments (e.g., subprocess.run() , subprocess.check_output()).

• sys : Access to system-specific parameters and functions, like command-line arguments (sys.argv),

exit codes (sys.exit()).

• re : Regular expressions for powerful text pattern matching and manipulation (e.g., parsing log files
or command output).

• datetime : For working with dates and times (e.g., timestamping logs).

• socket : For low-level network operations if needed.

• json : For parsing and generating JSON data, common in APIs and configurations.

Non-standard Library Modules for Scripting:
You can install additional modules using pip3 , refer to Chapter 4.5.1 Using pip to Install Third-Party

Libraries.

Extending Router Functionality 32

4.5 Advanced Features

4.5 Advanced Features

The full Python 3 Router App includes additional tools that enhance development capabilities. These
features are not available in the Python 3 Lite Router App.

4.5.1 Using pip to Install Third-Party Libraries

pip , or pip3 for Python3, is the standard package installer for Python. It allows you to download and
install packages from the Python Package Index (PyPI) and other repositories.

Basic Usage:

• Install a package:

pip3 install package_name

For example, to install the popular requests library for making HTTP requests:

pip3 install requests

• Install a specific version of a package:

pip3 install package_name==1.2.3

• Upgrade an installed package:

pip3 install --upgrade package_name

• List installed packages:

pip3 list

• Show information about an installed package:

pip3 show package_name

• Uninstall a package:

pip3 uninstall package_name

Considerations:

• Storage Space: Third-party libraries can consume significant storage space. Be mindful of the
router’s limited resources. Install only necessary packages.

• Internet Connectivity: The router needs internet access to download packages from PyPI.

• Compilation: Some Python packages may require compilation of C/C++ extensions during installa-
tion. The router environment may lack the necessary compilers or development headers. Prioritize
packages that are pure Python or provide pre-compiled "wheels" for ARM Linux (or the router’s archi-
tecture).

• Permissions: You typically need root or administrative privileges to install packages globally.

Extending Router Functionality 33

4.5 Advanced Features

4.5.2 Using venv for Isolated Virtual Environments

venv is a module used to create isolated Python virtual environments. Each virtual environment has its
own Python binary (or a link to it) and can have its own independent set of installed Python packages in its
site directories.

Benefits:

• Dependency Management: Avoids conflicts between projects that require different versions of the
same library.

• Clean Global Environment: Keeps your global Python site-packages directory clean.

• Reproducibility: Makes it easier to replicate a project’s environment.

Basic Usage:

1. Create a virtual environment: Navigate to your project directory (or where you want to create the
environment) and run:

python3 -m venv my_project_env

This will create a directory named my_project_env (or your chosen name) containing the virtual
environment.

2. Activate the virtual environment: Before you can use the virtual environment, you need to activate
it. The activation script is located in the environment’s bin directory.

source my_project_env/bin/activate
Your shell prompt will usually change to indicate that the virtual environment is active
(e.g., (my_project_env) user@router:~$).

3. Install packages within the environment: Once activated, any pip3 install commands will
install packages into the active virtual environment, not globally.

(my_project_env) $ pip3 install requests

4. Run Python scripts: Python scripts run while the environment is active will use the environment’s
Python interpreter and its installed packages.

5. Deactivate the virtual environment: When you are finished working in the virtual environment, you
can deactivate it:

(my_project_env) $ deactivate
Your shell prompt will return to normal.

6. Delete the virtual environment: To completelly delete the whole environment, just delete its direc-
tory:

rm -rf my_project_env

Considerations on Routers:

• Storage: Each virtual environment duplicates some files or creates symlinks, and stores its own
packages, consuming additional storage space. Use judiciously on resource-constrained routers.

• Activation: Remember to activate the correct environment before running scripts that depend on its
specific packages. For automated scripts (e.g., cron jobs), you’ll need to source the activate script or
call the Python interpreter from within the venv directly
(e.g., /path/to/my_project_env/bin/python your_script.py).

Extending Router Functionality 34

4.6 Router-Specific Python Development Notes

4.6 Router-Specific Python Development Notes

Developing Python scripts for Advantech routers requires consideration of their specific operating envi-
ronment, which is typically based on BusyBox and has resource constraints. Here are key points to keep
in mind:

• Limited Shell Commands and BusyBox Environment: BusyBox provides a compact set of Unix
utilities that often have fewer options and may exhibit slightly different behavior compared to their full
GNU counterparts found on standard Linux distributions. Python scripts calling external commands
should account for these differences.

• Robust Command Execution with subprocess: Python’s subprocess module is highly recom-
mended for running external shell commands. It offers superior control over input/output streams,
error handling, and overall execution flow compared to older methods like os.system(). Using
subprocess can also enhance script portability when dealing with variations in command behavior
or availability.

• On-Router Text Editing: The primary text editor available directly on the router is usually vi (or
a similar minimalist editor like nano on some builds). Familiarity with vi is beneficial for quick on-
router script modifications. A helpful BusyBox vi tutorial can be found online. (Poznámka: Odstraněn
‘utm_source‘ z URL, pokud to není záměr).

• File System Paths and Volatility: Be mindful of the router’s file system structure. Temporary files
should typically be written to /tmp, which is often a RAM disk (tmpfs) and its contents are cleared on
reboot. Locations for persistent storage depend on the router model and configuration (e.g., /opt,
/mnt/user, or an attached USB drive).

• Permissions and Privileges: Standard Linux file permissions apply. Your Python scripts will need
execute permissions (chmod +x script.py) to be run directly. Accessing certain system files, net-
work interfaces, or performing privileged operations (like using raw sockets or modifying system con-
figuration) may require root privileges. Run scripts with the minimum necessary privileges.

• Resource Constraints (CPU, RAM, Storage): Embedded routers inherently have limited CPU
power, RAM, and persistent storage compared to desktop systems. Write efficient Python code. Avoid
memory-intensive operations, very large libraries, or frequent disk writes if possible, especially when
using the "Lite" version of the Python Router App, which has a smaller footprint. Monitor resource
usage during development and testing.

• Router-Specific SDK Python Module (um): For interacting with router-specific hardware and soft-
ware functionalities—such as accessing GPIOs, reading system parameters (e.g., cellular signal
strength, device temperature), managing expansion port configurations, or generating HTML con-
tent for the router’s web interface—Advantech provides a specialized Python module named um. This
module is included as part of the Advantech SDK. Always consult the SDK documentation for your
target platform (refer to Section 8.3 SDK (Software Development Kit)) for details on the availability,
specific features, and usage of the um module.

• Cross-Compilation for Python Packages with C Extensions: If your Python project requires pack-
ages that include C extensions (which are common for performance-critical libraries or those interfac-
ing with C libraries), pip running on the router might be unable to build them directly if a C compiler
and the necessary development headers are not available on the router (which is typical). In such
cases, you may need to:

Extending Router Functionality 35

https://k.japko.eu/busybox-vi-tutorial.html

4.6 Router-Specific Python Development Notes

◦ Cross-compile the package on a development machine using a toolchain that targets the
router’s architecture (e.g., ARM). This involves setting up a cross-compilation environment for
Python extensions.

◦ Find pre-compiled wheels (.whl files) for the package that are specifically built for the router’s
architecture and Python version.

◦ Consider if a pure-Python alternative to the package exists.

This is an advanced topic and generally falls outside simple scripting.

By leveraging Python’s strengths in scripting and its subprocess module, you can effectively overcome
many of the limitations of a basic BusyBox shell and create powerful automation and management tools for
your Advantech router.

Extending Router Functionality 36

5. Practical Python Script Examples

The following examples demonstrate simple use cases for Python on your Advantech router. These
scripts assume they are run from the router’s CLI.

5.1 Gathering System Information

This script uses the subprocess module to run BusyBox commands and display system information.
This script pings a list of IP addresses to check their reachability. Save the code below into a file named
system_info.py .

#!/usr/bin/python3
import subprocess

print("Gathering Basic System Information...\n")

print("--- System Uptime ---")
try:

with open("/proc/uptime", "r") as f:
uptime_seconds = float(f.readline().split()[0])

days = int(uptime_seconds // (24 * 3600))
uptime_seconds %= (24 * 3600)
hours = int(uptime_seconds // 3600)
uptime_seconds %= 3600
minutes = int(uptime_seconds // 60)
seconds = int(uptime_seconds % 60)

print(f"System has been up for: {days} days, {hours} hours, {minutes} minutes, {seconds} seconds.")
except Exception as e:

print(f"Could not get uptime: {e}")
print()

print("--- Memory Usage ---")
try:

result = subprocess.run("free", shell=True, capture_output=True, text=True, check=True)
print(result.stdout.strip())
print("(Output is typically in kilobytes)")

except Exception as e:
print(f"Could not get memory usage: {e}")

print()

print("--- Disk Space ---")
try:

result = subprocess.run("df -k", shell=True, capture_output=True, text=True, check=True)
print(result.stdout.strip())
print("(Output is in 1K-blocks/kilobytes)")

except Exception as e:
print(f"Could not get disk space: {e}")

print()

print("--- Hostname ---")
try:

with open("/proc/sys/kernel/hostname", "r") as f:
hostname = f.read().strip()

print(hostname)
except Exception as e:

print(f"Could not get hostname: {e}")
print()

Extending Router Functionality 37

5.1 Gathering System Information

How It Works

This script gathers and displays basic system information from an Advantech router.

• The script begins with a shebang #!/usr/bin/python3 , indicating it should be executed using the

Python 3 interpreter located at /usr/bin/python3 .

• It imports the subprocess module: This standard Python module is used to run external shell

commands, such as free and df -k , and capture their output.

• The script then proceeds sequentially to gather and print different pieces of system information, each
within its own section. For error handling, each section uses a try...except Exception as e:
block, which catches any general error that occurs and prints a user-friendly message.

• System Uptime:

◦ A header "--- System Uptime ---" is printed.

◦ The script reads uptime information directly from the /proc/uptime file. This is a standard

virtual file in Linux systems that provides uptime statistics without needing an external uptime
command.

* with open("/proc/uptime", "r") as f: : This opens the file in read mode ("r").

The with statement ensures the file is automatically closed even if errors occur.

* f.readline().split()[0] : Reads the first line from the file, splits this line into a list

of strings (words), and takes the first element ([0]), which is the total system uptime in
seconds.

* float(...) : Converts the uptime string to a floating-point number.

◦ The total uptime in seconds is then converted into a more human-readable format of days, hours,
minutes, and seconds using integer division (//) and modulo (%) operations.

◦ The formatted uptime string is printed to the console.

• Memory Usage:

◦ A header "--- Memory Usage ---" is printed.

◦ The subprocess.run() function is used to execute the external shell command free .

* Command: "free" (displays amount of free and used memory in the system).

* shell=True : Indicates that the command should be executed through the system’s shell.

* capture_output=True : Specifies that the standard output and standard error of the com-
mand should be captured.

* text=True : Decodes the captured output as a text string.

* check=True : If the command returns a non-zero exit status (indicating an error), a CalledProcessError
exception is raised.

◦ result.stdout.strip() : The captured standard output from the free command is printed
after removing any leading or trailing whitespace.

◦ A note "(Output is typically in kilobytes)" is appended, as this is a common default

for the BusyBox version of free .

Extending Router Functionality 38

5.1 Gathering System Information

• Disk Space:

◦ A header "--- Disk Space ---" is printed.

◦ Again, subprocess.run() is used, this time to execute the command df -k .

* Command: "df -k" (reports file system disk space usage). The -k option ensures the
output is in 1K-blocks (kilobytes), which is generally supported by BusyBox df and avoids
issues with unsupported options like -h .

◦ The standard output from df -k is printed.

◦ A note "(Output is in 1K-blocks/kilobytes)" clarifies the units of the displayed sizes.

• Hostname:

◦ A header "--- Hostname ---" is printed.

◦ The system’s hostname is read directly from the /proc/sys/kernel/hostname file.

* with open("/proc/sys/kernel/hostname", "r") as f: : Opens this virtual file for read-
ing.

* f.read().strip() : Reads the entire content of the file (which is the hostname) and
removes any leading/trailing whitespace.

◦ The retrieved hostname is printed to the console.

• After each section’s output (or error message), print() is called to produce a blank line, improving
the readability of the overall output in the terminal.

Script Testing

Below is the console output, displaying the script’s creation (using vi) and its testing.

/var/scripts # vi system_info.py
(...create and save sripty with pi...)
/var/scripts # chmod +x system_info.py
/var/scripts # ./system_info.py
Gathering Basic System Information...

--- System Uptime ---
System has been up for: 0 days, 1 hours, 10 minutes, 34 seconds.

--- Memory Usage ---
total used free shared buff/cache available
Mem: 503840 38604 448744 184 16492 456496
Swap: 0 0 0
(Output is typically in kilobytes)

--- Disk Space ---
Filesystem 1024-blocks Used Available Use% Mounted on
/dev/root 64512 23544 40968 36% /
devtmpfs 251408 0 251408 0% /dev
none 251920 0 251920 0% /tmp
none 50384 184 50200 0% /var
/dev/mtdblock7 131072 19812 111260 15% /opt
/dev/mtdblock8 128 36 92 28% /var/data
(Output is in 1K-blocks/kilobytes)

--- Hostname ---
Router

/var/scripts #

Extending Router Functionality 39

5.2 Basic Network Reachability Test

5.2 Basic Network Reachability Test

This script pings a list of IP addresses to check their reachability. Save the code below into a file named
network_test.py .

#!/usr/bin/python3
import subprocess
import sys

def ping_host(host_ip, count=1):
"""Pings a host and returns True if reachable, False otherwise."""
command = ["ping", "-c", str(count), "-W", "1", host_ip]
try:

process = subprocess.Popen(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
process.communicate()
return process.returncode == 0

except FileNotFoundError:
print(f"Error: 'ping' command not found.", file=sys.stderr)
return False

except Exception as e:
print(f"Error pinging {host_ip}: {e}", file=sys.stderr)
return False

if __name__ == "__main__":
hosts_to_check = ["8.8.8.8", "1.1.1.1", "192.168.1.254"]

if len(sys.argv) > 1:
hosts_to_check = sys.argv[1:]

print("--- Network Reachability Test ---")
for host in hosts_to_check:

print(f"Pinging {host}... ", end="")
if ping_host(host):

print("Reachable")
else:

print("Unreachable")

How It Works

This script checks the network reachability of one or more specified hosts by sending ICMP ECHO_-
REQUEST packets (commonly known as "pinging" them).

• The script starts with a shebang #!/usr/bin/env python3 , which tells the system to use the

python3 interpreter found in the user’s environment PATH to execute the script.

• It imports two standard Python modules:

◦ subprocess : Used to create and manage child processes, specifically to run the external

ping command.

◦ sys : Provides access to system-specific parameters and functions, such as command-line

arguments (sys.argv) and standard error stream (sys.stderr).

• The ping_host(host_ip, count=1) Function: This function is responsible for pinging a single
host and determining if it is reachable.

◦ It takes two arguments:

* host_ip : The IP address or hostname of the target to ping.

Extending Router Functionality 40

5.2 Basic Network Reachability Test

* count=1 : An optional argument specifying the number of ping packets to send. It defaults
to 1.

◦ A list named command is constructed, representing the ping command and its arguments:

* ["ping", "-c", str(count), "-W", "1", host_ip]

* "ping" : The ping utility.

* "-c", str(count) : Sends a specific count of packets. (e.g., -c 1 sends one
packet).

* "-W", "1" : Sets a timeout of 1 second to wait for each reply. This is crucial for BusyBox
ping, which might behave differently from other ping versions regarding timeout for the whole
operation vs. per-packet.

* host_ip : The target host.

◦ The try...except block handles potential errors during the ping process:

* subprocess.Popen(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
: This starts the ping command as a new process.

· stdout=subprocess.DEVNULL and stderr=subprocess.DEVNULL : The standard

output and standard error streams of the ping command are redirected to DEVNULL
, meaning its output will not be displayed on the console. The script only cares about
the success or failure (exit code).

* process.communicate() : Waits for the ping command to complete.

* return process.returncode == 0 : Checks the exit code of the ping command. An

exit code of 0 typically indicates success (host is reachable). The function returns True
if successful, False otherwise.

* except FileNotFoundError: : If the ping command itself is not found on the system,

this error is caught. An error message is printed to sys.stderr , and the function returns

False .

* except Exception as e: : Catches any other exceptions that might occur during the ping

attempt. An error message including the specific exception is printed to sys.stderr , and

the function returns False .

• Main Execution Block (if __name__ == "__main__":): This part of the script runs when the
script is executed directly.

◦ hosts_to_check = ["8.8.8.8", "1.1.1.1", "192.168.1.254"] : A default list of IP ad-
dresses/hostnames is defined. These are public DNS servers and a common local gateway
IP.

◦ Command-Line Argument Handling:

* if len(sys.argv) > 1: : Checks if the script was run with any command-line arguments

(the script name itself is sys.argv[0]).

* hosts_to_check = sys.argv[1:] : If arguments are provided, the default list is replaced
with the list of arguments supplied by the user. For example, running
python3 script.py google.com example.com would set hosts_to_check to

["google.com", "example.com"] .

Extending Router Functionality 41

5.2 Basic Network Reachability Test

◦ A header "--- Network Reachability Test ---" is printed.

◦ The script then iterates through each host in the hosts_to_check list:

* print(f"Pinging host... ", end="") : Prints a message indicating which host is cur-

rently being pinged. The end="" argument prevents a newline, so the "Reachable" or
"Unreachable" status will appear on the same line.

* if ping_host(host): : Calls the ping_host function with the current host.

* Based on the boolean return value of ping_host() , it prints either "Reachable" or

"Unreachable" to the console.

Script Testing

Below is the console output, displaying the script’s creation (using vi) and its testing.

/var/scripts # vi network_test.py
(...create and save sripty with pi...)
/var/scripts # chmod +x network_test.py
/var/scripts # ./network_test.py
--- Network Reachability Test ---
Pinging 8.8.8.8... Reachable
Pinging 1.1.1.1... Reachable
Pinging 192.168.1.254... Unreachable
/var/scripts #

Extending Router Functionality 42

5.3 Simple Log File Monitoring

5.3 Simple Log File Monitoring

This script demonstrates reading a log file (e.g., /var/log/messages) and searching for specific key-

words. Save the code below into a file named log_monitoring.py .

Continuously reading large log files can impact performance. This example is illustrative. For produc-
tion use, consider more optimized log monitoring tools or techniques if available or develop a more
efficient file tailing mechanism in Python.

#!/usr/bin/python3
import sys
import re
import time

def monitor_log(log_file_path, keywords, interval_seconds=5):
"""Monitors a log file for lines containing specified keywords."""
print(f"Monitoring {log_file_path} for keywords: {keywords}")
print(f"Checking every {interval_seconds} seconds. Press Ctrl+C to stop.")

patterns = [re.compile(keyword, re.IGNORECASE) for keyword in keywords]

try:
last_lines_seen = set()
while True:

current_lines = set()
try:

with open(log_file_path, 'r') as f:
for line_number, line in enumerate(f, 1):

line = line.strip()
current_lines.add(line)
if line in last_lines_seen:

continue

for pattern in patterns:
if pattern.search(line):

print(f"[MATCH] Line {line_number}: {line}")
break

except FileNotFoundError:
print(f"Error: Log file '{log_file_path}' not found.", file=sys.stderr)
return

except Exception as e:
print(f"Error reading log file: {e}", file=sys.stderr)

last_lines_seen.update(current_lines)
time.sleep(interval_seconds)

except KeyboardInterrupt:
print("\nLog monitoring stopped.")

if __name__ == "__main__":
log_file = "/var/log/messages"
search_keywords = ["error", "warn", "dhcp"]

if len(sys.argv) > 1:
log_file = sys.argv[1]

if len(sys.argv) > 2:
search_keywords = sys.argv[2:]

try:
with open(log_file, 'r') as f:

pass
except Exception as e:

print(f"Cannot access log file {log_file}: {e}", file=sys.stderr)
sys.exit(1)

monitor_log(log_file, search_keywords)

Extending Router Functionality 43

5.3 Simple Log File Monitoring

How It Works

This script continuously checks a log file for lines matching specified keywords and prints any matches.

• Setup:

◦ It uses the python3 interpreter, as indicated by #!/usr/bin/python3 .

◦ Modules imported: sys (for system interaction like command-line arguments), re (for reg-

ular expression-based keyword matching), and time (for delays).

• Core Function: monitor_log(log_file_path, keywords, interval_seconds=5)
◦ Initialization: Prints what it’s monitoring and how often. Keywords are compiled into case-

insensitive regular expression patterns (re.compile(keyword, re.IGNORECASE)) for efficient

searching. A set last_lines_seen is used to track already processed lines to avoid re-printing
old matches.

◦ Monitoring Loop (while True:): This loop runs indefinitely until stopped (e.g., by Ctrl+C).

* In each iteration, it attempts to open and read the specified log_file_path . A set

current_lines stores all unique lines from this read.

* It iterates through each line of the log file. If a line hasn’t been seen before
(not in last_lines_seen), it checks if any of the compiled keyword patterns match

anywhere in the line using pattern.search(line) .

* If a match is found, the line number and the line content are printed.

* After checking all lines, last_lines_seen is updated with current_lines .

* The script then pauses for interval_seconds using time.sleep() before re-reading
the file.

◦ Error Handling:

* If the log file is not found during a check, an error is printed, and monitoring for that file stops.

* Other file reading errors are also caught and reported.

* Pressing Ctrl+C (KeyboardInterrupt) stops the monitoring loop gracefully and prints
a message.

• Main Execution Block (if __name__ == "__main__":)

◦ Defaults & Arguments: Sets default log_file (e.g., "/var/log/messages") and

search_keywords (e.g., ["error", "warn"]). These can be overridden by providing
command-line arguments: the first argument for the log file path, and subsequent arguments
for keywords.

◦ Initial File Check: Before starting, it tries to open the target log file to ensure it’s accessible. If
not, it prints an error and exits (sys.exit(1)).

◦ Start Monitoring: Calls the monitor_log function with the determined log file and keywords.

Extending Router Functionality 44

5.3 Simple Log File Monitoring

Script Testing

Below is the console output, displaying the script’s creation (using vi) and its testing.

/var/scripts # vi log_monitoring.py
(...create and save sripty with pi...)
/var/scripts # chmod +x log_monitoring.py
/var/scripts # ./log_monitoring.py
Monitoring /var/log/messages for keywords: ['error', 'warn', 'dhcp']
Checking every 5 seconds. Press Ctrl+C to stop.
[MATCH] Line 15: 2025-05-22 12:34:43 [info] dhcpd: Wrote 0 leases to leases file.
[MATCH] Line 21: 2025-05-22 12:34:48 [warning] totd[1431]: Disabling rescanning of network interfaces
^C
Log monitoring stopped.

Extending Router Functionality 45

Part III.

Router Apps

Extending Router Functionality 46

6. Getting Started with Router Apps

6.1 What are Router Apps

Router App (formerly known as User Module) refers to a software application specifically designed to run
on Advantech routers. These applications allow users to extend the router’s built-in functionality, customize
its behavior, and add new features tailored to specific needs. This guide describes the structure, devel-
opment process, and technical considerations necessary for creating your own Router Apps that integrate
correctly with the Advantech router environment.

Advantech routers run a Linux-based operating system (ICR-OS). While using a Linux environment for
Router App development is recommended for ease of use with toolchains and testing, it is not strictly
required. Router Apps can be developed using languages such as C, C++, or Python, provided they can
be compiled or executed within the router’s environment. This guide focuses on the general structure,
scripting conventions, configuration management, and system integration rules applicable across different
development approaches.

Figure 1.: Router Apps Programming Scheme

6.2 Overview of Development Approaches

Router Apps can broadly be categorized into:

• Compiled Applications: Typically written in C or C++, these applications are cross-compiled on
a development machine to produce binaries that run directly on the router’s processor. They offer
maximum performance and low-level system access.

• Scripted Applications: Often written in Python or shell scripts, these applications are interpreted at
runtime on the router. They offer faster development cycles and ease of use for many tasks.

Refer to Chapter 8.3 SDK (Software Development Kit) for information on available Software Development
Kits (SDKs) and cross-compilers for C/C++ and section II for Python development.

Extending Router Functionality 47

6.3 General Development Workflow and Tools

6.3 General Development Workflow and Tools

The general workflow for developing a Router App involves:

1. Setting up the development environment (SDK, toolchains).

2. Writing the application code (C/C++, Python, scripts).

3. Creating necessary control scripts (init , install , etc.) and configuration files.

4. Packaging the application into a *.tgz archive.

5. Uploading and testing the application on the target router.

6. Debugging and iterating.

Recommended General Tools

• Basic familiarity with the Linux command line and shell scripting is beneficial for creating installation
and initialization scripts.

• A text editor suitable for programming and script creation (ensuring Unix-style line endings, e.g., LF).

• Tools for creating TAR archives and Gzip compression (standard on most Linux distributions, readily
available for other operating systems).

Available Commands

Router Apps can leverage many standard Linux commands and utilities provided by the router’s BusyBox-
based environment. To explore available commands, connect to the router’s console (via SSH or Telnet)
and press the TAB key twice for shell completion suggestions, or run busybox --list . For help on

a specific BusyBox command, you can often use <command> --help . For details on both standard and
Advantech-specific commands, refer to the Command Line Interface Application Note.

Login Events in the System Log

To aid in debugging your scripts, you can add logging statements that write messages to the router’s
System Log (viewable in the web interface under Status → System Log). Use the logger utility for this

purpose. Add a line like the following near the beginning of each script (e.g., install , uninstall ,
init , etc.):

/usr/bin/logger -t mymodule "DEBUG: $0 $@"

Here:

• -t mymodule sets the tag name for the log entry (typically the name of your module or application).

• $0 expands to the script’s name.

• $@ expands to all arguments passed to the script.

This will log a message such as:
DEBUG: /etc/rc.d/init.d/myscript start verbose

Extending Router Functionality 48

https://icr.advantech.com/download/application-notes#command-line-interface

7. Router App Structure

7.1 Directory Structures for Applications

Router Apps, once installed, primarily reside in the /opt/<RAname> directory on the router, where

<RAname> is the name of your Router App (RA).
Recommended location for persistent runtime data generated by your app is /var/data/<RAname>

directory. This directory is usually cleaned up upon app uninstallation.

Internal Archive Structure

The schema below illustrates the typical internal structure of the RA directory structure.

<RAname> The base directory for installed RA.
|
|— /etc/ Subdirectory for scripts, information, and configuration files.
| |
| |— defaults File containing default configuration entries for the RA.
| |— depends File listing other RAs this app depends on.
| |— description A more detailed description of the RA, written in several sentences.
| |— init Initialization script (handles start, stop, etc.).
| |— install Script executed during the installation process.
| |— ip-up Script executed when a WAN connection (IPv4) is established.
| |— ip6-up Script executed when a WAN connection (IPv6) is established.
| |— ip-down Script executed when a WAN connection (IPv4) is lost.
| |— ip6-down Script executed when a WAN connection (IPv6) is lost.
| |— name File containing the human-readable name for the RA, shown in the web interface.
| |— report Script executed during the creation of the report file.
| |— requires File specifying the minimum compatible router firmware version.
| |— settings Actual configuration file (not included in the *.tgz archive).
| |— summary A brief one-sentence summary of the RA.
| |— uninstall Script executed during the uninstallation process.
| |— version File containing the RA version, shown in the web interface.
|
|— /bin/ Subdirectory for auxiliary files, binaries, daemons, or *.cgi scripts.
|— /lib/ For private shared libraries used only by your app (if not statically linked).
|
|— /www/ Subdirectory containing web interface files (HTML, CGI, etc.).

File type legend:

Information files Configuration files Script files

All subdirectories and files within the top-level /opt/<RAname> directory are optional, except for those

necessary for the app’s functionality and integration, e.g. init script if the app needs to start/stop/restart.

Extending Router Functionality 49

7.1 Directory Structures for Applications

Information Files

These optional plain text files provide metadata about the Router App, used by the router’s management
interface.

depends

This file lists dependencies, specifying any other Router Apps required for this app to function correctly.
List one Router App name per line. The name must match the directory name (<RAname>) of the depen-
dency as it appears in its *.tgz archive.

Python
otherModuleName

description

This file contains a more detailed description of the Router App, written in several sentences. This
description is not visible in the router GUI.

name

This file contains the full, human-readable name of the Router App. This name will be displayed in the
router’s web interface. It is recommended to use only the characters ’a’-’z’, ’A’-’Z’, ’0’-’9’, and space (’ ’) for
the name. If this file is absent, the RA’s directory name (<RAname>) will be used instead.

My Custom Router App

requires

This file specifies the minimum required version of the router’s firmware compatible with this Router App.
The version must follow the three-number format: MAJOR.MINOR.PATCH .

6.5.0

summary

This file contains a brief one-sentence summary of the Router App. This description is not visible in the
router GUI.

version

This file contains the version information for the Router App, which will be displayed in the web inter-
face. The recommended format is semantic versioning (MAJOR.MINOR.PATCH) followed by a date in
YYYY-MM-DD format, as shown below. If this file is missing, the version of the Router App will not be

displayed in the router’s web interface.

1.0.0 (2015-07-15)

Extending Router Functionality 50

7.1 Directory Structures for Applications

Configuration Files

defaults

This file must contain the default configuration parameters for the Router App. These parameters are
used during the initial installation and when the router is reset to factory defaults (using the RST button).

The content of this file should be copied to the settings file by the init script during installation

(specifically, when called with the defaults argument) to enable configuration backup functionality. If
your Router App does not require configuration, this file is not needed.

Variables must be defined using the following format: MOD_<RAname>_<variable_name>=<value>

Here, MOD signifies Router App, making it distinguishable from the router’s core configuration param-
eters. <RAname> is the name of the Router App (matching the directory and archive name), and
<variable_name> is the desired parameter name. It is recommended to use uppercase letters for both
<RAname> and variable_name .

MOD_MYMODULE_ENABLED=1
MOD_MYMODULE_PARAM1=0
MOD_MYMODULE_PARAM2=5
MOD_MYMODULE_PARAM3=20

settings

This file should not be included in the Router App’s *.tgz archive. It should be created during the

installation process by the init script (when called with the defaults parameter), see next paragraph.
Typically, the init script copies the contents of the defaults file into the runtime settings file,
enabling configuration backup.

When the router’s configuration is backed up, the contents of the settings file are included in the

resulting *.cfg file. This file also persists across Router App updates. When updating a Router App,

the system backs up the existing settings file. The updated Router App will first attempt to use the

restored settings file. It only refers back to the defaults file for parameters not found in the restored

settings file (e.g., newly added parameters).

Control Scripts

All control scripts (such as init , install , uninstall , ip-up , etc., located in the etc/
directory of your Router App) must start with the shebang line #!/bin/sh . They should be written using
POSIX-compliant shell syntax to ensure compatibility with the BusyBox ash shell environment typically
found on Advantech routers.

Do not forget to set execute permissions for all your script files. This should be done in your
development environment before packaging the Router App, or within the install script itself if
appropriate for dynamically generated scripts. Use the command: chmod +x <script_filename> .

Extending Router Functionality 51

7.1 Directory Structures for Applications

init

This is the initialization script for the Router App. It is invoked by the system with different parameters
depending on the context (e.g., router startup, Router App installation, update, removal). It can also be
called manually with a specific parameter. If an init script is not present, no actions will be performed
for the Router App during these events. The script accepts the following parameters:

• start – Executed automatically at router startup and after the Router App is successfully installed.
Use this to start daemons or perform necessary setup.

• stop – Executed automatically before updating or uninstalling the Router App. Use this to gracefully
stop daemons and perform cleanup.

• restart – Not called automatically. Can be called manually to stop and then start the Router App.

• status – Not called automatically. Can be called manually to check if the Router App’s services are
running. Should exit with 0 if running, non-zero otherwise.

• defaults – Executed automatically after installation and when the router’s RST button is pressed (fac-
tory reset). Its primary purpose is to copy the contents of the ’defaults’ file into the runtime settings
file, usually located at /opt/$MODNAME/etc/settings .

An example init script is shown below. This example simply prints messages into Syslog indicating the
action being performed. Set the MOD_NAME variable in this script to match your Router App Name. Note
the cp command in the defaults case, which copies default settings to the runtime settings file, en-

abling configuration backup. This source code can be found in the example1 of the SDK documentation
(reref to Chapter 8.3 SDK (Software Development Kit)).

#!/bin/sh

MOD_NAME=example1
MOD_DEFAULTS=/opt/$MOD_NAME/etc/defaults
MOD_SETTINGS=/opt/$MOD_NAME/etc/settings
[-L "$MOD_SETTINGS"] && MOD_SETTINGS=`readlink $MOD_SETTINGS`

/usr/bin/logger -t $MOD_NAME "DEBUG: $0 $@"

case "$1" in
start)

echo "Starting module $MOD_NAME: done"
exit 0
;;

stop)
echo "Stopping module $MOD_NAME: done"
exit 0
;;

restart)
$0 stop
$0 start
;;

status)
echo "Module $MOD_NAME is running"
exit 0
;;

defaults)
cp $MOD_DEFAULTS $MOD_SETTINGS 2>/dev/null
;;

*)
echo "Usage: $0 {start|stop|restart|status|defaults}"
exit 1

esac

Extending Router Functionality 52

7.1 Directory Structures for Applications

install

This script is executed once, immediately after the Router App’s files have been extracted and copied to
the /opt/ directory during the installation process. Use this for initial setup tasks that only need to run
once upon installation. See Section 7.3 for the sequence of script execution.

uninstall

This script is executed during the uninstallation process. It runs after the Router App has been stopped
(via init stop) but just before its files are deleted from the /opt/ directory. Use this script to perform
any necessary cleanup. See Section 7.3 for the script execution order.

ip-up

Executed when a WAN (IPv4) connection is established.
Parameters: <ip-address> <WAN-interface> .

Example: /opt/mymodule/etc/ip-up 10.40.28.64 ppp0

ip6-up

Executed when a WAN (IPv6) connection is established.
Parameters: <ip6-address> <WAN-interface> .

Example: /opt/mymodule/etc/ip6-up fc00::a40:37 ppp0

ip-down

Executed when a WAN (IPv4) connection is lost.
Parameters: <ip-address> <WAN-interface> .

Example: /opt/mymodule/etc/ip-down 10.40.28.64 ppp0

ip6-down

Executed when a WAN (IPv6) connection is lost.
Parameters: <ip6-address> <WAN-interface> .

Example: /opt/mymodule/etc/ip6-down fc00::a40:37 ppp0

report

This scrit is executed during the creation of the report file (from console or GUI). It has no parameters
passed to the script.

Extending Router Functionality 53

7.1 Directory Structures for Applications

Web Interface Files

Overview of Web Interface Integration

The /opt/<RAname>/www/ directory in your Router App package is key for web interface integration.

If a file named index.html or index.cgi (or similar standard index file) exists within this directory,
a link to it will appear in the router’s main web interface under the Customization -> Router Apps section.
Clicking this link will access the Router App’s web interface.

If the /www directory is absent, or if it does not contain a recognizable index file, no link will be shown in
the main web interface. The contents of the /opt/<RAname>/www directory are mapped to the following

URL: http(s)://<router ip address>/module/<RAname> (where <RAname> is your Router App’s
name).

Adding Static and Dynamic Content

• Static Content: HTML, CSS, JavaScript files, and images can be placed directly into the /www
directory.

• Dynamic Content: CGI scripts (written in shell, Python, C/C++ compiled to executable, etc.) can be
placed in /www . Ensure they are executable and produce valid HTTP headers and HTML content.
The Python example in Section 8.6 is one such case.

Web Interface Security

Regarding access control for the Router App’s web interface, you have two options:

1. Secured (Recommended): Protect the web interface using the router’s existing user authentication
system. To do this, create a file named .htpasswd inside the /opt/<RAname>/www/ directory.

This file should be a symbolic link to the router’s main password file, located at /etc/htpasswd .

Use the following command within your install script or manually via SSH (execute inside
/opt/<RAname>/www/):

ln -s /etc/htpasswd .htpasswd

This ensures that accessing the Router App’s web interface requires the same username and pass-
word used to log into the main router interface.

2. Unsecured: If no .htpasswd file (or a symbolic link named .htpasswd) exists in the /www
directory, the web interface will be accessible to anyone who can reach the router’s IP address,
without requiring authentication. This option is strongly discouraged due to security risks.

Extending Router Functionality 54

7.2 Application Packaging

7.2 Application Packaging

Router App Archive Format

To upload a Router App into an Advantech router, it must be packaged as a *.tgz archive file (a TAR
archive compressed with Gzip). This archive must contain a single top-level directory, refer to 7.1 Internal
Archive Structure.

The name of this single top-level directory inside the archive must be identical to the base name of the
*.tgz archive file itself (excluding the platform suffix and .tgz extension). This base name is restricted

to a maximum of 24 characters and can only contain alphanumeric characters (’a’-’z’, ’A’-’Z’, ’0’-’9’) and the
underscore (’_’). Using spaces or other special characters in the base name, or in any subdirectory or file
names within the archive, is strongly discouraged.

Archiv name of a Router App has this syntax: <RAname>.<platform>.tgz , e.g. mymodule.v4.tgz .

Creating a Router App Archive

It is recommended to use our SDK to compile the source code and build the Router App archive. Refer
to section 8.4.

If you want to create the Router App archive manually, you can proceed as follows. Assume that your
Router App files are organized within a directory named mymodule and, for demonstration purposes,

have a minimal structure containing only the init file with the content from section 7.1. The source file
structure would then look like this:

mymodule/ (RA root directory)
`-- etc/ (/etc folder)

`-- init (file with init script)

To create the archive, you can use the script bellow (named as pack.sh).

#!/bin/bash
set -e

[-z "$1"] && { echo "Error: App name is missing."; echo "Usage: $0 <appname> <platform>"; exit 1; }
[-z "$2"] && { echo "Error: Platform is missing."; echo "Usage: $0 <appname> <platform>"; exit 1; }
[-d "$1"] || { echo "Error: Directory '$1' not found."; exit 1; }

echo "Packing $1 for platform $2 → $1.$2.tgz"
tar -c --owner=0 --group=0 --mtime="2001-01-01 UTC" --exclude-vcs "$1" | gzip -n > "$1.$2.tgz"
echo "Done."

This script has following syntax: pack.sh <appname> <platform> . To pack mymodule Router App

for platform v4 , navigate to the parent directory of mymodule and execute these commands:

user@machine:~$ chmod +x pack.sh
user@machine:~$./pack.sh mymodule v4
Packing mymodule for platform v4 → mymodule.v4.tgz
Done.

It will create package with this content:

mymodule.v4.tgz
`-- mymodule.v4.tar

`-- mymodule/
`-- etc/

`-- init

Extending Router Functionality 55

7.3 Application Lifecycles

If you install this Router App in the router’s GUI, you will see followng messages in the Syslog:

[notice] mymodule: DEBUG: /opt/mymodule/etc/init defaults
[notice] mymodule: DEBUG: /opt/mymodule/etc/init start
[notice] umupdate: Module mymodule added.
[notice] https: user 'root' added user module 'mymodule.v4.tgz'

Here, the two rows are just comming from the init file (script).

7.3 Application Lifecycles

Shell scripts executed during Router App management (install , uninstall , init) should be
designed to complete reasonably quickly (ideally within a few seconds) to avoid delaying the overall system
operation or causing timeouts in the web interface.

Router App Installation Sequence

Installation occurs when a new Router App *.tgz archive is uploaded via the web interface (Cus-
tomization -> Router Apps). The process is as follows:

1. User presses the Add or Update button and uploads the *.tgz archive.

2. The system extracts the archive and copies the contents to /opt/mymodule directory.

3. The install script is executed: /opt/mymodule/etc/install

4. The init script is called to set defaults: /opt/mymodule/etc/init defaults (This should create

the settings file from defaults).

5. The init script is called to start the app: /opt/mymodule/etc/init start

Router App Update Sequence

Updating is triggered by uploading a *.tgz archive with the same name as an already installed Router
App.

1. User presses the Add or Update button and uploads the new *.tgz archive.

2. The system identifies that an app with the same name exists.

3. The init script of the currently installed (old) version is called to stop it:
/opt/<RAname>/etc/init stop

4. The system automatically backs up the existing runtime configuration file:
/opt/<RAname>/etc/settings .

5. The system deletes all files and subdirectories of the old version from /opt/<RAname> .

6. The system extracts the contents of the new *.tgz archive to /opt/<RAname> .

7. The install script of the new version is executed (if present): /opt/<RAname>/etc/install .

Extending Router Functionality 56

7.3 Application Lifecycles

8. The init script of the new version is called to apply its defaults (if present):
/opt/<RAname>/etc/init defaults .

9. The system automatically restores the backed-up settings file from step 4, overwriting the settings
file created in step 8. This merge operation ensures that previously configured values are retained for
existing parameters, and new parameters get their defaults.

10. The init script of the new version is called to start the app (if present):
/opt/<RAname>/etc/init start .

Router App Uninstallation Sequence

Uninstallation is triggered by pressing the Delete button next to a Router App in the web interface.

1. User presses the Delete button for the target Router App.

2. The init script is called to stop the app: /opt/mymodule/etc/init stop

3. The uninstall script is executed: /opt/mymodule/etc/uninstall (Use this for any final cleanup).

4. The entire Router App directory (/opt/mymodule) and its contents are removed from the router’s
filesystem.

Extending Router Functionality 57

8. Building Router Apps

This chapter outlines the essential tools and resources required for developing compiled Router Apps
in C or C++ for Advantech routers. Proper setup of the development environment is crucial for successful
cross-compilation and deployment.

8.1 Overview of Development Tools

In addition to general development tools (such as a text editor and basic command-line familiarity, as
mentioned in Chapter 6 Getting Started with Router Apps), creating compiled C/C++ Router Apps specifi-
cally requires:

• A cross-compiler toolchain tailored to the target Advantech router’s architecture (e.g., ARMv7,
AArch64). This toolchain allows you to compile code on your development machine (typically x86-64
Linux) that will run on the router.

• Optionally, but highly recommended, an SDK (Software Development Kit) provided by Advantech.
The SDK often simplifies development by providing pre-configured build systems, example applica-
tions, helper libraries (like the um module for Python, or C equivalents), and documentation specific
to Advantech platforms.

8.2 Cross-Compiler Toolchains

For compiling Router Apps written in C or C++, you must use a cross-compiler toolchain that matches
the architecture of your target router platform (e.g., v2i, v3, v4, v4i). Advantech provides pre-built toolchains
suitable for common development host environments.

The Advantech toolchains repository conveniently provides both Debian packages (.deb) for Debian-
based Linux systems (such as Ubuntu) and RPM packages (.rpm) for RPM-based Linux distributions
(such as Fedora or CentOS), allowing for straightforward installation on a wide range of development host
systems.

Toolchain For Router Platforms Download Link
C/C++ Applications v2i, v3, v4, v4i https://bitbucket.org/bbsmartworx/toolchains

Table 2.: Advantech Cross-Compiler Toolchains

Always refer to the README file or documentation included within the downloaded toolchain archive for
the most up-to-date installation and usage instructions specific to that toolchain version and your develop-
ment host operating system.

Extending Router Functionality 58

https://bitbucket.org/bbsmartworx/toolchains

8.3 SDK (Software Development Kit)

Example: Installing Toolchains on a Debian-based Linux System

The following commands illustrate a typical process for cloning the repository and installing these pack-
ages:

Clone the toolchains repository from Bitbucket
user@machine:~$ git clone https://bitbucket.org/bbsmartworx/toolchains.git
Cloning into 'toolchains'...
... (output from git clone) ...

Navigate into the cloned directory
user@machine:~$ cd toolchains/

Install all .deb packages found in the 'deb' subdirectory
This command typically requires root privileges, hence 'sudo'.
user@machine:~/toolchains$ sudo dpkg -i deb/*.deb
... (output from dpkg -i, showing package installations) ...

After installing the toolchain packages, the cross-compilers (e.g., armv7-linux-gnueabi-gcc ,

armv7-linux-gnueabi-g++ , aarch64-linux-gnu-gcc , aarch64-linux-gnu-g++ , etc.) are typically

installed under the /opt/toolchain/ directory, for instance, in subdirectories like

/opt/toolchain/gcc-icr-v3-armv7-linux-gnueabi/bin/ or

/opt/toolchain/gcc-icr-v4-aarch64-linux-gnu/bin/ .

8.3 SDK (Software Development Kit)

Advantech provides an SDK (ModulesSDK on Bitbucket) designed to facilitate Router App development
for both C/C++ and Python. Utilizing the SDK is highly recommended as it often includes:

• Example Router Apps demonstrating various functionalities and best practices.

• Helper libraries or modules (e.g., for interacting with router hardware like GPIOs, LEDs, or for web
interface integration).

• Pre-configured Makefiles or build scripts that simplify the cross-compilation process for different router
platforms.

Using the official SDK ensures better compatibility and access to platform-specific features.

Supported Languages Router Platforms SDK Download Link
C/C++ and Python v2i, v3, v4, v4i https://bitbucket.org/bbsmartworx/modulessdk

Table 3.: Advantech Router App SDK (ModulesSDK)

Consult the README file or other documentation included within the SDK for detailed instructions on its
setup, structure, and usage.

Extending Router Functionality 59

https://bitbucket.org/bbsmartworx/modulessdk

8.3 SDK (Software Development Kit)

Example: Cloning and Using the ModulesSDK

The following commands demonstrate cloning the ModulesSDK repository and typical steps for compiling
libraries and example applications provided within it. Ensure that you have the appropriate cross-compiler
toolchains (as described in Section 8.2 Cross-Compiler Toolchains) installed and configured in your sys-
tem’s PATH before attempting to compile SDK examples.

Clone the ModulesSDK repository, perhaps into a directory named 'ModulesSDK'
user@machine:~$ git clone https://bitbucket.org/bbsmartworx/modulessdk.git ModulesSDK
Cloning into 'ModulesSDK'...
... (output from git clone) ...

Navigate into the cloned SDK directory
user@machine:~$ cd ModulesSDK/

Compile common libraries provided by the SDK
user@machine:~/ModulesSDK$ make
... (output from make, compiling libraries) ...

Clean all build artifacts
user@machine:~/ModulesSDK$ make clean

The exact make targets and variables (like PLATFORM) will depend on the specific structure and
Makefiles within the ModulesSDK. Always refer to the SDK’s documentation for precise build instructions.

If compiled successfully, the Router App installation archives are created in the ModulesSDK/images
folder.

Extending Router Functionality 60

8.4 Building Your First Compiled Application with the SDK

8.4 Building Your First Compiled Application with the SDK

This section provides a step-by-step guide to creating a simple command-line utility, crc32sum , as
a compiled Router App using C and the Advantech ModulesSDK. The crc32sum utility will calculate the
CRC32 (Cyclic Redundancy Check) checksum of files stored on the router. CRC32 is an error-detecting
code commonly used to verify data integrity. This utility can be used by administrators or other scripts on
the router to:

• Verify if a configuration file, firmware component, log file, or any other data file has been corrupted or
unintentionally modified.

• Confirm data transfer success by comparing its CRC32 checksum against the source file’s checksum.

• Be incorporated into shell scripts for automated integrity checks of critical files.

We will use the Advantech ModulesSDK for this example, as it is the recommended approach. The SDK
simplifies the cross-compilation process and helps in building Router App installation packages (*.tgz)
for various target router platforms. Ensure you have the ModulesSDK cloned and the necessary cross-
compiler toolchains installed (refer to Chapter 8 Building Router Apps).

Step 1: Writing the C Program

The C program, which we will name crc32sum.c , will take a filename as a command-line argument
and print its CRC32 checksum.

Source code for crc32sum.c:

Place following code into ModulesSDK/modules/crc32sum/source/crc32sum.c file.

Extending Router Functionality 61

8.4 Building Your First Compiled Application with the SDK

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h> // For uint32_t

// Standard CRC32 polynomial
#define CRC32_POLYNOMIAL 0xEDB88320L

// Function to calculate CRC32 (PKZIP, Ethernet, PNG standard)
static uint32_t calculate_crc32(FILE *file) {

// Static table to ensure it's initialized only once
static uint32_t crc_table[256];
static int table_initialized = 0; // Flag to check if table is initialized
uint32_t current_crc_value;
int i, j;
unsigned char byte_read;

// Initialize CRC table only once
if (!table_initialized) {

uint32_t crc_entry;
for (i = 0; i < 256; i++) {

crc_entry = i;
for (j = 0; j < 8; j++) {

// LSB-first processing for table generation
crc_entry = (crc_entry & 1) ? (crc_entry >> 1) ^ CRC32_POLYNOMIAL : crc_entry >> 1;

}
crc_table[i] = crc_entry;

}
table_initialized = 1;

}

// Calculate CRC of the file content
current_crc_value = 0xFFFFFFFFL; // Initial CRC value (standard for this CRC32 variant)
while (fread(&byte_read, 1, 1, file) == 1) {

// LSB-first processing of byte into CRC
current_crc_value = crc_table[(current_crc_value ^ byte_read) & 0xFF] ^ (current_crc_value >> 8);

}
return current_crc_value ^ 0xFFFFFFFFL; // Final XOR (standard for this CRC32 variant)

}

int main(int argc, char *argv[]) {
FILE *file_ptr;
uint32_t calculated_crc_value;

if (argc != 2) {
fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
return 1; // Indicate error

}

file_ptr = fopen(argv[1], "rb"); // Open in binary read mode
if (file_ptr == NULL) {

perror("Error opening file"); // perror prints the system error string
return 1; // Indicate error

}

calculated_crc_value = calculate_crc32(file_ptr);
fclose(file_ptr);
printf("%08X\t%s\n", calculated_crc_value, argv[1]); // Output in uppercase hex
return 0; // Indicate success

}

Key features of crc32sum.c:
• It includes <stdint.h> for fixed-width integer types like uint32_t .

• The calculate_crc32 function implements a standard table-driven CRC32 algorithm, consistent
with common CRC32/PKZIP variants.

• It reads the input file byte by byte in binary mode ("rb").

• The main function handles command-line arguments (expecting a single filename) and file opera-
tions, including basic error checking.

• Output is formatted to print the 8-digit uppercase hexadecimal CRC32 value followed by a tab char-
acter and the filename, similar to utilities like md5sum .

Extending Router Functionality 62

8.4 Building Your First Compiled Application with the SDK

Step 2: Creating the Router App Control Scripts and Metadata

This step involves preparing the necessary control scripts and metadata files within the etc/ directory
of your Router App. For this crc32sum utility, which is a command-line tool and not a background daemon,
an init script for starting/stopping a service is not required. Instead, install and uninstall
scripts will manage a symbolic link to make the command globally accessible.

The install script:

This script creates a symbolic link in /usr/bin , allowing crc32sum to be run without specifying its
full path after the Router App is installed.

#!/bin/sh
Create a symbolic link for crc32sum in /usr/bin

ln -sf /opt/crc32sum/bin/crc32sum /usr/bin/crc32sum

exit 0

The uninstall script:

This script removes the symbolic link created during installation when the Router App is uninstalled.

#!/bin/sh
Remove the symbolic link for crc32sum from /usr/bin

rm -f /usr/bin/crc32sum

exit 0

Important: After creating these install and uninstall scripts, ensure they are made executable
using the chmod +x command (e.g., chmod +x install uninstall) on your development machine
before building the app.

Optional metadata files in etc/ subdirectory:

• name : A plain text file containing the human-readable name for display in the router’s web interface.
Example content:

CRC32 Sum Utility

• version : A plain text file specifying the version of your Router App. Example content:

1.0.0 (2025-05-21)

Extending Router Functionality 63

8.4 Building Your First Compiled Application with the SDK

Step 3: Preparing Makefiles for SDK Compilation

The Advantech ModulesSDK uses a Makefile-based build system. To integrate our crc32sum applica-
tion:

1. Create the module directory: If it doesn’t exist, create a directory for your new module within the
SDK, for example: ModulesSDK/modules/crc32sum/ .

2. Copy the main Makefile template: Copy the generic module Makefile from
ModulesSDK/modules/template/Makefile to your new module’s directory:

ModulesSDK/modules/crc32sum/Makefile . This Makefile handles the overall process of building
the module for different platforms and packaging it.

3. Create the source Makefile: Create a new directory ModulesSDK/modules/crc32sum/source/ .
Inside this source/ directory, create another Makefile with the following content to define how
your C code is compiled:

Content for ModulesSDK/modules/crc32sum/source/Makefile:

Include common rules and definitions from the SDK's root
include ../../../Rules.mk

Define the name of the executable to be built
MODULE_TARGET_EXE = crc32sum
Define the C source file(s) for the executable
MODULE_TARGET_SRC = crc32sum.c

Optional: Add linker libraries if needed (e.g., -lm for math, -lpthread for pthreads)
For crc32sum.c, no extra libraries are needed beyond standard C.
LDLIBS += -lm

Use a standard SDK macro to define the build rule for the program
$(eval $(call build-program, $(MODULE_TARGET_EXE), $(MODULE_TARGET_SRC)))

Define the 'install' target for this source Makefile.
This target is called by the main module Makefile to copy the compiled
binary into the staging directory before packaging.
install:

Create the 'bin' directory in the staging area (DESTDIR) if it doesn't exist
@install -d $(DESTDIR)/bin
Copy the compiled executable to DESTDIR/bin/ and set execute permissions (755)
@install -m 755 $(OBJDIR)/$(MODULE_TARGET_EXE) $(DESTDIR)/bin/$(MODULE_TARGET_EXE)

Extending Router Functionality 64

8.4 Building Your First Compiled Application with the SDK

Resulting Directory Structure for the crc32sum Module within SDK

After these steps, the directory structure for your crc32sum module within the ModulesSDK should
look like this:

ModulesSDK/
|-- Rules.mk (and other root SDK files)
|-- modules/
| |-- crc32sum/
| | |-- merge/
| | | `-- etc/
| | | |-- install (install script)
| | | |-- name (metadata file)
| | | |-- uninstall (uninstall script)
| | | `-- version (metadata file)
| | |-- source/
| | | |-- crc32sum.c (your C source code)
| | | `-- Makefile (Makefile for compiling crc32sum.c)
| | `-- Makefile (main Makefile for the crc32sum module, copied from template)
| |-- template/
| | `-- Makefile (original template Makefile)
| |-- example1/
| |-- example2/
| |-- ... (other example modules)
`-- ... (other SDK directories like images/, libs/)

Step 4: Building the Router App Package

Once the source code and Makefiles are in place within the ModulesSDK structure:

• Navigate to the SDK’s root directory:

user@machine:$ cd /path/to/your/ModulesSDK/

• Build for all modules:

Often, simply running make from the root of the SDK might build all modules for all default platforms
if the main SDK Makefile is structured that way.

user@machine:/ModulesSDK$ make

The SDK’s build system will handle the cross-compilation using the appropriate toolchain and then pack-
age the application into a *.tgz archive. The resulting installation packages are typically placed in

a directory like ModulesSDK/images/crc32sum/ . For instance, you might find

ModulesSDK/images/crc32sum/crc32sum.v4.tgz .

Extending Router Functionality 65

8.4 Building Your First Compiled Application with the SDK

Step 5: Uploading and Testing

Upload the generated *.tgz archive file for the target platform (e.g., crc32sum.v4.tgz) to your
Advantech router. This is typically done via the router’s web interface, in the section Customization →
Router Apps. After the Router App is installed by the system (which includes running your install
script):

• The utility should be available as the crc32sum command globally due to the symbolic link created
in /usr/bin .

• Test from the router’s CLI:

◦ Create a test file: echo "test data" > /tmp/testfile.txt

◦ Run the utility: crc32sum /tmp/testfile.txt
◦ Verify the output. For a file containing the exact string "test data" followed by a newline character

(which echo typically adds), the CRC32 checksum should be 176BDC9D . The output will
appear as:
176BDC9D /tmp/testfile.txt

This example provides a compact C utility whose core logic (CRC32 calculation) is a strong candidate for
C implementation rather than shell scripting. Using the SDK streamlines the build and packaging process
for different router platforms.

Extending Router Functionality 66

8.5 Core Programming for Compiled Applications

8.5 Core Programming for Compiled Applications

Libraries and Dependency Management for Compiled Apps

To ensure the continued proper functioning of your Router App after router firmware updates, adhere
to the following recommendations regarding libraries and dependencies:

• Avoid dynamic linking to libraries provided by the router’s firmware, with the exception of the
standard C library (glibc). Link other necessary libraries statically with your Router App
whenever possible.

• Do not rely on the presence or specific versions of other libraries in the router’s filesystem
(e.g., in /usr/lib), except for glibc .

The reason for these recommendations is that libraries included in the router’s firmware (other than
glibc , which maintains strong backward compatibility guarantees) may change, be updated, or even be

removed between different firmware versions or across router models. Making your Router App indepen-
dent of these system libraries (except for relying on a baseline glibc) is crucial for ensuring it remains
compatible across firmware updates and different router platforms.

If you are developing your Router App in C or C++, you can dynamically link against the glibc library

provided by the router (typically located in /lib or /usr/lib via symlinks).

Interfacing with Router System Services and APIs

Compiled applications can interact with the router’s system services and hardware through several mech-
anisms:

• Standard Linux System Calls: Direct invocation of system calls (e.g., open() , read() , write() ,

socket() , fork()) provides the most fundamental level of interaction with the Linux kernel and
its services.

• Shell Commands via system() or popen(): Executing shell commands using the system() C li-

brary function or managing command I/O via popen() . This approach should be used with caution
due to potential security risks (e.g., command injection if external input is used to construct commands
without proper sanitization) and performance overhead compared to direct API calls or system calls.

• Inter-Process Communication (IPC): If your application needs to communicate with other daemons
or processes running on the router, standard Linux IPC mechanisms such as pipes, FIFOs (named
pipes), POSIX message queues, shared memory, or Unix domain sockets can be utilized.

• Specific ioctl Calls for Hardware Access: For direct hardware manipulation (e.g., GPIOs, LEDs,
serial ports, or other custom hardware), ioctl system calls on specific device files
(e.g., /dev/gpiochip0 , /dev/ttyS0) are often the method of choice. The specific ioctl
commands, request codes, and data structures are hardware and driver-dependent. Detailed infor-
mation on these low-level hardware APIs should be available in the Advantech SDK documentation
or platform-specific hardware/driver guides. The SDK often provides wrapper functions or libraries
to simplify these interactions. (Note: The ioctl command-line utility is not typically present in
BusyBox by default, so interaction is via the C system call.)

Extending Router Functionality 67

8.5 Core Programming for Compiled Applications

The Advantech SDK, when available for your target platform and development language, typically pro-
vides helper functions, libraries, and example code to simplify access to router-specific functionalities and
hardware, abstracting some of the lower-level details and promoting more portable code across Advantech
platforms.

Debugging and Testing Compiled Applications

Effective debugging and testing are crucial for developing robust compiled applications on an embedded
platform like an Advantech router:

• System Log Integration: Utilize the logger command-line utility (if calling from shell scripts)

or the syslog() C library functions (after openlog()) from within your C application to send
diagnostic messages, status updates, and error reports to the router’s system log. This is often the
primary method for on-device debugging and monitoring. (Your console output confirms logger is
available).

• Debug Builds and Symbols: When cross-compiling, create a debug version of your application
by including debugging symbols (typically using the -g compiler flag with GCC). While on-router
interactive debugging tools like GDB might be limited or not present in standard firmware, these
symbols are invaluable if you can perform remote debugging (e.g., with GDB server if available) or
analyze core dumps generated by application crashes.

• Resource-Aware Testing: Test your application thoroughly on the actual target router platform(s).
Pay close attention to resource consumption (CPU utilization, RAM footprint, flash storage usage)
under various operational conditions to ensure your app is efficient and does not destabilize the
router.

• SDK Examples and Documentation: If an SDK is provided by Advantech for your router model,
review its example applications and documentation. These can serve as valuable references for best
practices, API usage, build system configuration, and platform-specific considerations.

• Incremental Development and Unit Testing: Develop and test components or features incremen-
tally. For complex applications, start with basic functionality and add features step-by-step, testing
at each stage. Where possible, write unit tests for individual functions or modules that can be run in
your cross-compilation environment or on the target.

• Robust Error Handling: Implement comprehensive error handling in your C code. Diligently check
return values of all system calls and library functions. Log errors appropriately (e.g., to syslog) to aid
in diagnostics.

• Cross-Platform Considerations: If your Router App is intended to run on multiple Advantech router
models or different firmware versions, test for compatibility and be mindful of potential differences in
available libraries, kernel features, or hardware interfaces.

Extending Router Functionality 68

8.6 Developing Scripted Router Applications (Python)

8.6 Developing Scripted Router Applications (Python)

Advantech routers support the development of Router Apps using Python, offering a high-level, rapidly
developed alternative to compiled languages like C/C++ for many tasks. Python 3 is typically available on
supported platforms via dedicated Python Router Apps (see Part II Python for general Python installation
and usage on the router). This chapter focuses on leveraging Python specifically for creating Router App
packages.

Python Environment within a Router App

When a Python script runs as part of an installed Router App, it operates within the Python environment
provided by the active Python Router App (Full or Lite version) on the device. This environment includes
the Python 3 interpreter and its standard library.

For router-specific functionalities, such as accessing GPIOs, reading system parameters, or generating
HTML content for integration with the router’s web interface, Advantech provides a special Python module
named um . This module is included as part of an SDK. Always consult the SDK documentation for your
target platform (refer to Section 8.3 SDK (Software Development Kit)) for details on the availability and
usage of the um module.

Advantages and Limitations of Python for Router Apps

Using Python for developing Router Apps presents several benefits and some considerations:

Advantages

• Rapid Development: Python’s concise syntax and high-level nature generally lead to faster devel-
opment cycles compared to C/C++.

• Ease of Use: Python is known for its readability and simpler learning curve, making it accessible for
a wider range of developers.

• Suitability for Specific Tasks: Excellent for web scripting (e.g., CGI scripts for custom web interface
pages), automation tasks (e.g., scheduled jobs, event-driven actions), data processing (e.g., parsing
logs, manipulating configuration), and network scripting.

• Rich Standard Library: Python’s extensive standard library provides many built-in modules for com-
mon tasks, reducing the need for external dependencies.

• Third-Party Libraries (with Full Python RA): The Full Python Router App, with pip , allows ac-
cess to a vast ecosystem of third-party libraries via PyPI, greatly extending capabilities (see Sec-
tion 4.5.1 Using pip to Install Third-Party Libraries).

Limitations

• Resource Consumption: Python applications, being interpreted, can have higher CPU and memory
overhead compared to equivalent applications compiled from C/C++. This is an important considera-
tion for resource-constrained embedded routers.

• Performance: For extremely time-critical operations or computationally intensive tasks (e.g., high-
speed packet processing, complex cryptographic calculations), the performance of Python might be
a bottleneck compared to C/C++.

Extending Router Functionality 69

8.6 Developing Scripted Router Applications (Python)

• Dependency Management (Lite Python RA): If using the Python Lite RA (which lacks pip),
managing third-party dependencies requires manually bundling them with your Router App, which
can be less convenient.

• Startup Time: Python scripts might have a slightly longer startup time compared to compiled binaries.

Application Structure for Python Router Apps

Python applications packaged as Router Apps follow the same general directory structure and packaging
conventions as compiled Router Apps, as described in Chapter 7 Router App Structure. Key considerations
for Python scripts include:

• Executable Scripts and Daemons: Python scripts intended to be run as main executables or back-
ground daemons (started by the init script of your Router App) should typically be placed in
the /bin directory within your Router App package (e.g., /opt/<app_name>/bin/myscript.py).

These scripts should have a shebang line (e.g., #!/usr/bin/python3) and be made executable

(chmod +x).

• Custom Python Modules: If your application consists of multiple Python files or custom library mod-
ules, you can place them in the root directory of your Router App package
(e.g., /opt/<app_name>/mymodule.py) or in a dedicated subdirectory (e.g., /opt/<app_name>/lib/).
These modules can then be imported into your main scripts using standard Python import mecha-
nisms (e.g., import mymodule or from lib import my_utility). Ensure the Python interpreter

can find these modules (Python typically adds the script’s own directory to sys.path).

• CGI Scripts for Web Interface Integration: Python scripts designed as CGI (Common Gateway
Interface) applications to extend the router’s web GUI must be placed in the /www subdirectory of
your Router App package (e.g., /opt/<app_name>/www/index.cgi).

◦ These CGI scripts must have execute permissions.

◦ They must start with a shebang line pointing to the Python interpreter (e.g., #!/usr/bin/python3).

◦ The first line of output from a CGI script must be a valid HTTP header, typically
Content-Type: text/html , followed by a blank line, before any HTML content is printed. The
um module, if used, often handles this.

• Control Scripts (init, install, uninstall): These scripts, located in /etc , are standard shell
scripts (#!/bin/sh) and are used to manage the lifecycle of your Python Router App (e.g., start-
ing/stopping a Python daemon). They are not Python scripts themselves.

Extending Router Functionality 70

8.6 Developing Scripted Router Applications (Python)

Example: Python CGI for System Status Display

The following is an example (available in SDK as example7) of a Python CGI script, index.cgi ,
intended to be part of a Router App. It demonstrates how to use the (hypothetical or SDK-provided) um
module to retrieve and display various system status information (like GPIO states, supply voltage, and
internal temperature) on a custom web page within the router’s web interface. This script would typically
reside in /opt/<app_name>/www/index.cgi within your Router App package.

#!/usr/bin/python3

**
#
CGI script of User Module
#
Copyright (C) 2016-2024 Advantech Czech s.r.o.
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
**

import um

MODULE_TITLE = b"Example 7"

um.html_page_begin(MODULE_TITLE)

um.html_form_begin(MODULE_TITLE, b"System Status", None, 0, None, None)

um.html_pre_head(b"Binary Input")

msg = b"Binary input BIN0 is "
msg += b"OFF" if um.gpio_get_bin0() else b"ON"
msg += b"."

um.html_pre_text(msg)

um.html_pre_head(b"Binary Output")

msg = b"Binary output OUT0 is "
msg += b"ON" if um.gpio_get_out0() else b"OFF"
msg += b"."

um.html_pre_text(msg)

um.html_pre_head(b"Supply Voltage")

voltage = (um.gpio_get_voltage() + 50) / 100

msg = "Supply voltage is "
msg += str(voltage / 10.0) + " V" if voltage > 0 else "N/A"
msg += "."

um.html_pre_text(msg.encode('utf-8'))

um.html_pre_head(b"Temperature")

temperature = um.gpio_get_temperature()

msg = "Internal temperature is "
msg += str(temperature - 273) + " °C" if temperature > 0 else "N/A"
msg += "."

um.html_pre_text(msg.encode('utf-8'))

um.html_form_end(None)

um.html_page_end()

Extending Router Functionality 71

8.6 Developing Scripted Router Applications (Python)

This example script is illustrative and demonstrates:

• Importing the router-specific um module (if available).

• Using functions from the um module (e.g., um.html_page_begin() , um.gpio_get_bin0())
to generate HTML content for display in the router’s web interface and to retrieve hardware status
information.

• The interpretation of values returned by hardware-access functions (e.g., whether 0 means ON or
OFF for a binary input) is dependent on the specific implementation of the um module and the
underlying hardware of the router model. This should be clearly documented by the SDK or module
provider.

• Basic error handling using try...except blocks for robustness, especially when dealing with hard-
ware interactions or external modules.

• The necessity of encoding Python strings to bytes (e.g., using msg.encode('utf-8')) if the um
module’s HTML functions expect byte strings.

The um module plays a crucial role in abstracting the low-level hardware and web interface details,
making it simpler to access these features from Python scripts within a Router App.

Managing Dependencies for Python Router Apps

When your Python Router App relies on libraries:

• Standard Libraries: If your app uses only Python standard libraries, ensure they are part of the
Python environment provided by the installed Python RA (Full or Lite) on the router. Most common
standard libraries are usually included.

• Third-Party Libraries (Not Pre-installed):

◦ Full Python RA with pip3 : If the Full Python RA is installed, you can potentially use pip3
to install required third-party libraries from PyPI directly onto the router as a post-installation
step (e.g., triggered from your Router App’s install or init script, or manually by an
administrator). This requires internet access and careful consideration of storage space and
compilation needs.

◦ Bundling Libraries: For both Full and Lite RAs (especially mandatory for Lite), if libraries are
not installable via pip or if you want a self-contained app, you must bundle the necessary
pure-Python third-party libraries directly within your Router App package.

* Place the library’s source code (e.g., the package directory) into a subdirectory within your
Router App (e.g., /opt/<app_name>/vendor/).

* In your Python scripts, you may need to adjust sys.path at runtime to include this vendor
directory so Python can find the bundled modules:

Extending Router Functionality 72

8.6 Developing Scripted Router Applications (Python)

In your main Python script:
import sys
import os
Assuming your script is in /opt/<app_name>/bin/
and vendor directory is /opt/<app_name>/vendor/
app_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
vendor_dir = os.path.join(app_root, "vendor")
if vendor_dir not in sys.path:

sys.path.insert(0, vendor_dir)

Now you can import your bundled library
import my_bundled_library

* Alternatively, if your app structure allows, relative imports might be usable.

◦ C Extensions: Libraries with C extensions that require compilation are challenging to bundle
directly without pre-compiling them for the target router architecture.

• Virtual Environments (venv): While venv is excellent for development, its direct usage and de-
ployment within a Router App package on the router itself are generally less common due to increased
storage footprint and complexity in managing activation for automated scripts. If used, the path to the
virtual environment’s interpreter must be explicitly invoked.

Deployment of Python Router Apps

Deployment of a Python-based Router App follows the same procedure as for any other Router App:

1. Package Contents: Package all necessary Python scripts (.py), custom modules, bundled third-
party libraries (if any), CGI scripts, and any other required files (e.g., configuration templates, data
files) into the *.tgz archive.

2. Directory Structure: Adhere to the standard Router App directory structure (e.g., bin/ for exe-
cutables, www/ for CGI, etc/ for control scripts, custom module directories).

3. Permissions: Ensure all scripts that need to be executed (main scripts in bin/ , CGI scripts in
www/) have execute permissions set (chmod +x) before packaging. The control scripts in etc/

(init , install , uninstall) must also be executable shell scripts.

4. Installation: Upload the *.tgz package to the router via the web interface (Customization →
Router Apps or similar menu). The router’s system will then handle the extraction and setup, including
running your install script.

Refer to Chapter 7 Router App Structure for general Router App packaging and lifecycle details.

Extending Router Functionality 73

9. Summary and Best Practices

9.1 Key Development Constraints Recap

• Storage space in the /opt directory, where Router Apps are installed, is limited. Refer to Table 9
for partition sizes specific to each platform. Plan your application size accordingly.

• On platforms with a 128 KiB MRAM partition for /var/data (e.g., standard v3), limit your Router
App’s usage of this space to approximately 64 KiB to ensure sufficient space for the operating system.
See Section 15.1 for details.

• Note that the /opt directory persists across router firmware updates, preserving installed Router

Apps. Data stored in /var/data also generally persists.

• Router Apps run within a BusyBox environment, which provides a subset of standard Linux commands
and shell features. Ensure your scripts use POSIX-compliant shell syntax (#!/bin/sh) and rely only
on commands available on the target router.

• Be mindful of RAM and CPU limitations detailed in Chapter 15.

• Adhere to library linking guidelines (Section 8.5) for C/C++ apps to maintain firmware compatibility.

• Follow security best practices for web interfaces.

9.2 Best Practices Recap

• Use the official SDKs and toolchains when available.

• Structure your application package correctly (*.tgz with a single top-level directory).

• Implement robust init , install , and uninstall scripts.

• Manage application configuration using defaults and settings files.

• Keep scripts and applications lightweight and efficient.

• Test thoroughly on target hardware and across different firmware versions if aiming for broad com-
patibility.

• Use logging for easier debugging.

• Secure web interfaces appropriately.

Extending Router Functionality 74

9.3 Firewall Rules for Router Apps

9.3 Firewall Rules for Router Apps

If your Router App runs a server accepting connections on a specific TCP or UDP port, you must con-
figure the router’s firewall (iptables) to allow this traffic, especially if the router’s "Default Server" NAT
option is enabled.

The Send all remaining incoming packets to default server option in the NAT configuration (see Figure 2)
can redirect incoming traffic to a specified internal IP address if no other NAT or firewall rule explicitly
handles it. This can prevent connections from reaching your Router App.

To ensure traffic reaches your application, the Router App should manage its own firewall rules, typically
within its init script (/opt/<RAname>/etc/init), adding rules on start and removing them on
stop .

Figure 2.: The Default Server Option in the NAT Configuration (for IPv4)

Integration with Router Firewall Chains: Advantech router firmware often provides predefined chains
designed for Router App firewall rules to integrate cleanly with the system’s overall firewall structure. Use
these chains:

• in_mod chain (filter table): This chain is typically jumped to from the main INPUT chain
(which filters traffic destined *for the router itself*). Rules placed here (or in a custom chain jumped
to from here) can explicitly ACCEPT traffic destined for the port your application is listening on.

• pre_mod chain (nat table): This chain is typically jumped to early in the PREROUTING chain
(which handles incoming packets *before* the routing decision, primarily for DNAT). By adding a rule
here (or in a custom chain jumped to from here) that ACCEPT s traffic destined for your application’s
port, you prevent that traffic from being processed by later DNAT rules in the PREROUTING chain,
specifically bypassing the "Default Server" rule.

The example init script snippet below shows functions add_chain() and del_chain() for

managing these rules using a unique chain for the application. The add_chain() function is called dur-
ing init start with parameters like mod_mymodule tcp 1000 , where mod_mymodule is a unique

identifier (custom chain name) for the app’s rules, tcp is the protocol, and 1000 is the port num-

ber (which should ideally be read from the app’s settings file). The del_chain() function, called
during init stop , removes the custom chain and the jumps to it, cleaning up the firewall rules. The

del_chain function in the example includes checks to prevent errors if rules or chains don’t exist before
attempting deletion.

Extending Router Functionality 75

9.3 Firewall Rules for Router Apps

Example Functions for init Script:

MODNAME=mymodule
MODEXEC=mymoduled
add_chain() {

/sbin/iptables -N $1 || return
/sbin/iptables -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/iptables -A in_mod -j $1
/sbin/iptables -t nat -N $1
/sbin/iptables -t nat -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/iptables -t nat -A pre_mod -j $1
if [-f /sbin/ip6tables]; then
/sbin/ip6tables -N $1 || return
/sbin/ip6tables -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/ip6tables -A in_mod -j $1
/sbin/ip6tables -t nat -N $1
/sbin/ip6tables -t nat -A $1 -p $2 --dport $3 -j ACCEPT
/sbin/ip6tables -t nat -A pre_mod -j $1
fi

}
del_chain() {

Check if chain exists before attempting to delete
/sbin/iptables -L $1 >/dev/null 2>&1
if [$? -eq 0]; then

/sbin/iptables -D in_mod -j $1 2>/dev/null
/sbin/iptables -F $1
/sbin/iptables -X $1

fi
Check if nat chain exists
/sbin/iptables -t nat -L $1 >/dev/null 2>&1
if [$? -eq 0]; then

/sbin/iptables -t nat -D pre_mod -j $1 2>/dev/null
/sbin/iptables -t nat -F $1
/sbin/iptables -t nat -X $1

fi
Handle IPv6 rules if ip6tables exists
if [-f /sbin/ip6tables]; then

/sbin/ip6tables -L $1 >/dev/null 2>&1
if [$? -eq 0]; then

/sbin/ip6tables -D in_mod -j $1 2>/dev/null
/sbin/ip6tables -F $1
/sbin/ip6tables -X $1

fi
/sbin/ip6tables -t nat -L $1 >/dev/null 2>&1
if [$? -eq 0]; then

/sbin/ip6tables -t nat -D pre_mod -j $1 2>/dev/null
/sbin/ip6tables -t nat -F $1
/sbin/ip6tables -t nat -X $1

fi
fi

}

Extending Router Functionality 76

9.3 Firewall Rules for Router Apps

Example case Statement in init Script:

case "$1" in
start)

echo -n "Starting module $MODNAME: "
. /opt/$MODNAME/etc/settings
["$MOD_EXAMPLE5_ENABLED" != "1"] && echo "skipped" && exit 0
add_chain mod_$MODNAME tcp $MOD_MYMODULE_PORT 2> /dev/null
/opt/$MODNAME/bin/$MODEXEC &
RETVAL=$?
[$RETVAL = 0] && echo "done" || echo "failed"
exit $RETVAL
;;

stop)
echo -n "Stopping module $MODNAME: "
killall $MODEXEC 2> /dev/null
del_chain mod_$MODNAME 2> /dev/null
RETVAL=$?
[$RETVAL = 0] && echo "done" || echo "failed"
exit $RETVAL
;;

*)
echo "Usage: $0 {start|stop|restart|status|defaults}"
exit 1

esac

Simplified iptables Structure Overview: The following illustrates where the custom module chains

(mod_... , created by add_chain) typically fit into the router’s packet processing flow.

• nat Table (Connection Tracking, Address/Port Translation)

– PREROUTING Chain (Incoming packets, before routing decision)

* ... (Standard rules)

* JUMP to pre chain (Typically for WAN interfaces). This chain usually jumps to pre_mod
, which contains specific modification rules such as:

· JUMP to mod_app1 chain (App 1’s rules)

· JUMP to mod_app2 chain (App 2’s rules)

· ... (Further rules added by add_chain)

* ... (Standard DNAT rules, potentially Default Server DNAT rule)

– POSTROUTING Chain (Outgoing packets, after routing decision)

* ...

* ... (Standard SNAT/MASQUERADE rules)

By adding an ACCEPT rule in a custom chain jumped to from pre_mod (nat table), the Router App

prevents its traffic from being redirected by later DNAT or Default Server rules. The corresponding ACCEPT
rule jumped to from in_mod (filter table) explicitly allows the traffic to reach the application process
running on the router.

Extending Router Functionality 77

Part IV.

Controlling Router Peripherals

Extending Router Functionality 78

10. Digital Input/Output Interfaces

10.1 io Utility

The io utility allows controlling binary outputs and reading binary/analog/counter inputs from the com-
mand line.

Binary I/O often uses inverse logic. Active physical input (e.g., high voltage) might read as logical
0 . Setting output to 1 might result in a low voltage physically. Always consult the specific router

model’s User Manual for I/O logic details.

Synopsis

io get <pin> or io set <pin> <value>

Command Description
get <pin> Reads the state of input <pin> (e.g., bin0, an1, cnt1).

set <pin> <value> Sets the state of output <pin> to <value> (typically 0 or 1).

Table 4.: io Utility Commands

Pin Names

Refer to the router’s User Manual for available pin names (bin0 , out0 , an1 , cnt1 , etc.), which
depend on the model and installed expansion modules (e.g., XC-CNT).

Examples

• io set out0 1 : Sets binary output OUT0 to state 1.

• io get bin0 : Reads the state of binary input BIN0. Check exit code $? (0 or 1).

• io get an1 : Reads the value of analog input AN1 (if XC-CNT present).

• io get cnt1 : Reads the value of counter input CNT1 (if XC-CNT present).

Extending Router Functionality 79

10.2 Activate Binary Output via SMS

10.2 Activate Binary Output via SMS

See Section 3.1 Handling Incoming SMS with a Custom Script for details on the custom SMS handling
mechanism using /var/scripts/sms . Ensure this mechanism is enabled in the router’s SMS configura-
tion.

This example demonstrates the implementation of a new SMS command, "IMPULSE", which activates
binary output OUT0 for 5 seconds. It is triggered when an SMS containing the text "IMPULSE" is received
by the router. The command is processed only if the sender is authorized.

Authorization Logic Options

The example script includes two common ways to authorize the sender:

1. Check the flag passed by the system ($1): If the sender’s number is listed in the Phone Number x
fields in the router’s SMS settings GUI, $1 will be 1 .

2. Hardcode specific phone number(s) directly in the script and compare against the sender’s number
($2).

The example uses a combination (OR logic). Adjust the authorization check as needed for your require-
ments.

Startup Script

This script creates the /var/scripts/sms handler script in RAM at boot time.

#!/bin/sh

Create the SMS handler script in RAM
cat > /var/scripts/sms << EOF
#!/bin/sh

Specify the authorized phone number
PHONE=+420123456789

if ["\$1" = "1"] || ["\$2" = "\$PHONE"]; then
if ["\$3" = "IMPULSE"]; then

io set out0 1
sleep 5
io set out0 0

fi
fi
EOF

How It Works

• The startup script creates the handler script /var/scripts/sms .

• Inside the handler script:

Extending Router Functionality 80

10.2 Activate Binary Output via SMS

◦ It first checks for authorization:

* ["" = "1"] : Is it an authorized sender?; || : Logical OR.

* ["" = "$PHONE"] : Is the sender’s phone number hardcoded?

◦ if ["" = "IMPULSE"] : Checks if the third parameter (the first word of the SMS text) is
exactly "IMPULSE". Note: This check is case-sensitive.

◦ If the command matches:

* io set out0 1 : Uses the Advantech io utility to set binary output OUT0 to state 1
(check router manual for physical logic - often active-low).

* sleep 5 : Pauses execution for 5 seconds.

* io set out0 0 : Sets binary output OUT0 back to state 0 (inactive state).

• This sequence effectively creates a 5-second pulse on OUT0 when an authorized SMS containing
the word "IMPULSE" is received.

Extending Router Functionality 81

10.3 Send Email on Binary Input Activation

10.3 Send Email on Binary Input Activation

Make sure you have correctly configured the SMTP server in Configuration → Services → SMTP. Refer to
Chapter 3.2 Email Configuration Notes if applicable.

This script sends an informational email when the state of binary input BIN0 changes to active. It contin-
uously monitors the input and sends a notification only when the input transitions from inactive (state 1) to
active (state 0, assuming active-low logic).

Startup Script

#!/bin/sh

Specify email address
EMAIL=john.doe@email.com

Specify email subject
MESSAGE="BIN0 is active"

while true
do

io get bin0
VAL=$?
if ["$VAL" != "$OLD"]; then

["$VAL" = "0"] && email -t $EMAIL -s "$MESSAGE"
OLD=$VAL

fi
sleep 1

done

How It Works

• The script defines the destination email address (EMAIL) and the email subject (MESSAGE).

• It enters an infinite loop (while true) to continuously monitor the input.

• Inside the loop:

◦ io get bin0 : Reads the current state of binary input BIN0 using the io utility.

◦ VAL=$? : Captures the exit status of io get . For binary inputs, this is typically 0 for the
active state and 1 for the inactive state (verify with router manual).

◦ if ["$VAL" != "$OLD"] : Checks if the current state (VAL) is different from the state
stored from the previous iteration (OLD). This detects any change.

◦ ["$VAL" = "0"] && email -t $EMAIL -s "$MESSAGE" : This is a short-circuit AND condi-
tion executed only if the state has changed. If the new state (VAL) is 0 (active), it executes the
email command to send the notification.

◦ OLD=$VAL : Updates the stored state (OLD) with the current state (VAL) for the next loop
iteration.

◦ sleep 1 : Pauses the script for 1 second before checking the input again.

• This logic ensures an email is sent only upon the transition from inactive (1) to active (0), avoiding
repeated emails if the input remains active or becomes inactive.

Extending Router Functionality 82

10.3 Send Email on Binary Input Activation

Python Script

Here is an equivalent script in Python. Save the code below into a file named send_email.py .

#!/usr/bin/python3
import sys
import time
import subprocess

Configuration
EMAIL_RECIPIENT = "john.doe@email.com"
EMAIL_SUBJECT = "BIN0 is active"
INPUT_PIN = "bin0" # The binary input pin to monitor
POLL_INTERVAL_SECONDS = 1
ACTIVE_STATE_EXIT_CODE = 0

def get_input_pin_state(pin_name):
try:

command = ["io", "get", pin_name]
process = subprocess.run(command, capture_output=True, text=True)
return process.returncode

except FileNotFoundError:
print(f"Error: The 'io' command was not found. Please ensure it's in the PATH.", file=sys.stderr)
return None

except Exception as e:
print(f"An unexpected error occurred while getting pin {pin_name} state: {e}", file=sys.stderr)
return None

def send_email_notification(recipient, subject):
try:

command = ["email", "-t", recipient, "-s", subject]
subprocess.run(command, check=True, capture_output=True, text=True)
print(f"Email notification sent to {recipient} with subject: {subject}", file=sys.stderr)

except FileNotFoundError:
print(f"Error: The 'email' command was not found. Please ensure it's in the PATH.", file=sys.stderr)

except subprocess.CalledProcessError as e:
print(f"Error executing 'email' command: {e.stderr.strip()}", file=sys.stderr)

except Exception as e:
print(f"An unexpected error occurred while sending email: {e}", file=sys.stderr)

def main():
old_state = None

print(f"Monitoring {INPUT_PIN} every {POLL_INTERVAL_SECONDS} second(s). Press Ctrl+C to stop.", file=sys.stderr)

try:
while True:

current_state = get_input_pin_state(INPUT_PIN)

if current_state is not None:
if current_state != old_state:

if current_state == ACTIVE_STATE_EXIT_CODE:
print(f"Input {INPUT_PIN} transitioned to ACTIVE. Sending email.", file=sys.stderr)
send_email_notification(EMAIL_RECIPIENT, EMAIL_SUBJECT)

old_state = current_state
time.sleep(POLL_INTERVAL_SECONDS)

except KeyboardInterrupt:
print("\nMonitoring stopped by user.", file=sys.stderr)

except Exception as e:
print(f"An unexpected error occurred in the main loop: {e}", file=sys.stderr)

if __name__ == "__main__":
main()

Extending Router Functionality 83

10.3 Send Email on Binary Input Activation

How It Works

This Python script continuously monitors a specified binary input pin on the router. If the pin transitions
to an active state, the script sends an email notification.

• Initialization and Configuration:

◦ The script starts with a shebang line (#!/usr/bin/python3), ensuring it’s executed by the
Python 3 interpreter.

◦ It imports standard Python modules: sys (for system interaction, though minimally used here

beyond sys.stderr), time (for pausing execution), and subprocess (for running external

router commands like io and email).

◦ Essential configuration parameters are defined at the beginning:

* EMAIL_RECIPIENT : The email address to which notifications will be sent.

* EMAIL_SUBJECT : The subject line for the notification email.

* INPUT_PIN : The name of the binary input pin to be monitored (e.g., "bin0").

* POLL_INTERVAL_SECONDS : The duration in seconds the script waits between checks of the
input pin’s state.

* ACTIVE_STATE_EXIT_CODE : Defines the exit code returned by the io get <pin_name>
command that signifies the pin is in its active state (typically 0 for Advantech routers).

• Reading Input Pin State (get_input_pin_state function):

◦ This function is responsible for querying the current state of the specified binary input pin.

◦ It constructs and executes the router’s command io get <pin_name> using subprocess.run() .

◦ The function returns the exit code of the io get command. For Advantech router binary
inputs, an exit code of 0 usually indicates an active state, and 1 indicates an inactive state.

◦ It includes error handling: if the io command is not found or another error occurs during
execution, it prints an error message to standard error (sys.stderr) and returns None .

• Sending Email Notification (send_email_notification function):

◦ This function handles the sending of email alerts.

◦ It takes the recipient email address and the email subject as arguments.

◦ It forms and executes the router’s command email -t <recipient> -s <subject> using

subprocess.run() . This relies on the router having a configured email utility.

◦ Error handling is included to catch issues such as the email command not being found or the
command failing (e.g., mail server misconfiguration), printing error messages to sys.stderr .

• Main Monitoring Loop (main function):

◦ A variable old_state is initialized to None , representing an unknown initial state of the input
pin.

◦ A startup message is printed to sys.stderr , indicating which pin is being monitored and the
polling interval.

◦ The script enters an infinite loop (while True:) to continuously monitor the input pin. This
loop can be interrupted by pressing Ctrl+C (KeyboardInterrupt).

◦ Inside the loop:

Extending Router Functionality 84

10.3 Send Email on Binary Input Activation

* current_state = get_input_pin_state(INPUT_PIN) : The current state of the input pin
is read.

* if current_state is not None: : The script only proceeds if the pin state was success-
fully read (i.e., io get didn’t fail).

* if current_state != old_state: : This condition checks if the pin’s state has changed
since the last check. This is key to sending an email only upon a state transition.

· if current_state == ACTIVE_STATE_EXIT_CODE: : If the state has changed and the
new state is the defined active state (e.g., exit code 0), an informational message is
printed to sys.stderr , and the send_email_notification function is called.

· old_state = current_state : After processing any change, old_state is updated
to the current_state for the next iteration. This ensures that an email is sent only
once when the pin transitions to active, and not repeatedly if it remains active.

* time.sleep(POLL_INTERVAL_SECONDS) : The script pauses for the specified interval be-
fore repeating the loop.

◦ The main loop is wrapped in a try...except KeyboardInterrupt block to allow the user to

stop the script gracefully. A general except Exception block is also present to catch other
unexpected errors during the loop’s execution.

• Script Execution Entry Point:

◦ The standard if __name__ == "__main__": construct ensures that the main() function is
called only when the script is executed directly.

Script Testing

Below is the console output, displaying the script’s creation (using vi) and its testing.

/var/scripts # vi send_email.py
(...create and save sripty with pi...)
/var/scripts # chmod +x send_email.py
/var/scripts # ./send_email.py
Monitoring bin0 every 1 second(s). Press Ctrl+C to stop.
Input bin0 transitioned to ACTIVE. Sending email.
Email notification sent to x.y@advantech.com with subject: BIN0 is active
^C
Monitoring stopped by user.
/var/scripts #

Extending Router Functionality 85

10.4 Send SNMP Trap on Binary Input State Change

10.4 Send SNMP Trap on Binary Input State Change

Make sure you have correctly configured the SNMP manager in Configuration → Services → SNMP.

This script sends an SNMP trap to the configured SNMP manager whenever the state of binary input
BIN0 changes (either becoming active or inactive). It continuously monitors the input state.

Startup Script

#!/bin/sh

Specify SNMP manager address
SNMP_MANAGER=192.168.1.2

while true
do

io get bin0
VAL=$?
if ["$VAL" != "$OLD"]; then

snmptrap $SNMP_MANAGER 1.3.6.1.4.1.30140.2.3.1.0 u $VAL
OLD=$VAL

fi
sleep 1

done

How It Works

• The script defines the IP address of the SNMP manager (SNMP_MANAGER).

• It enters an infinite loop (while true) for continuous monitoring.

• Inside the loop:

◦ io get bin0 : Reads the current state of binary input BIN0.

◦ VAL=$? : Captures the exit status (state: 0=active, 1=inactive).

◦ if ["$VAL" != "$OLD"] : Checks if the state has changed since the last check.

◦ If the state has changed:

* snmptrap $SNMP_MANAGER 1.3.6.1.4.1.30140.2.3.1.0 u $VAL : Sends an SNMP trap.

· $SNMP_MANAGER : The destination IP address.

· 1.3.6.1.4.1.30140.2.3.1.0 : The specific OID (Object Identifier) being sent. This
OID represents the state of bin0 .

· u : Specifies the data type of the value being sent as Unsigned32.

· $VAL : The current state (0 or 1) of the input pin.

* OLD=$VAL : Updates the stored state for the next comparison.

◦ sleep 1 : Pauses for 1 second before the next check.

• This script sends an SNMP trap containing the specific OID and the new state (0 or 1) every time the
binary input changes state.

Extending Router Functionality 86

11. Serial Interfaces

This chapter provides an overview of using serial interfaces on Advantech routers. It covers identifying
available serial ports, command-line utilities for their configuration and use, and an example of interacting
with a serial port using a Python script packaged as a Router App via the Advantech ModulesSDK.

11.1 Identifying Serial Interfaces

Advantech routers support various serial interface standards, with RS-232 and RS-485 being common.
The specific interfaces available (e.g., physical DB9 ports, terminal blocks, or those provided via expansion
modules like PORT1/PORT2) and their parameters (e.g., dedicated ttyS* device, configurable modes) vary
by router model. Always consult the hardware manual for your specific router model for detailed specifica-
tions.

To list available serial device nodes on a router, you can use the following console command. The
presence of a device node in /dev/ (e.g., /dev/ttyS0 , /dev/ttyUSB0) indicates that the kernel
recognizes a serial interface. However, this does not always mean a physical port is directly accessible on
the device exterior without additional configuration or hardware. Serial interfaces can also be provided by
USB-to-UART converters, which typically appear as /dev/ttyUSB* devices.

~ # ls -l /dev/tty*
crw-rw-rw- 1 root root 5, 0 Jan 1 1970 /dev/tty
crw------- 1 root root 249, 0 Jan 1 1970 /dev/ttyS0
crw-rw---- 1 root daemons 249, 1 Jan 1 1970 /dev/ttyS1
crw-rw---- 1 root daemons 249, 5 Jan 1 1970 /dev/ttyS5
crw-rw---- 1 root daemons 188, 0 May 26 06:56 /dev/ttyUSB0
crw-rw---- 1 root daemons 188, 1 May 26 06:56 /dev/ttyUSB1
% ... (other ttyUSB* devices if present) ...

Serial port configuration (baud rate, data bits, parity, stop bits) can be managed using command-line
utilities or programmatically, as detailed in the following sections.

11.2 Command-Line Utilities for Serial Ports

Two common utilities for managing serial ports from the command line are stty and portd .

stty - Set and Print Terminal Line Settings

The stty program is used to change and print terminal line settings, including those for serial ports. It
allows you to configure parameters like baud rate, character size, parity, stop bits, and flow control.

Synopsis:
stty [-a|g] [-F DEVICE] [SETTING]...

Extending Router Functionality 87

11.2 Command-Line Utilities for Serial Ports

Common Options:

Option Description

-F DEVICE Open and use the specified DEVICE instead of standard input.

-a Print all current settings in human-readable form.

-g Print all current settings in a stty-readable form (can be used to save and restore
settings).

[SETTING]... One or more settings to apply. Common settings include:
◦ <N>: Set speed to N bits per second (e.g., 115200).
◦ cs<N>: Set character size to N bits (cs7 or cs8).
◦ cstopb: Use two stop bits (prefix with - for one stop bit, e.g., -cstopb).
◦ parenb: Enable parity generation/detection.
◦ -parodd: Use even parity (if parenb is set). parodd for odd parity.
◦ -inpck: Disable input parity checking.
◦ ignpar: Ignore characters with parity errors.
◦ [-]raw: Enable (or disable with -) raw input. Disables most input processing.
◦ [-]echo: Enable (or disable) echoing of input characters.
◦ [-]crtscts: Enable (or disable) RTS/CTS hardware flow control.
◦ [-]ixon: Enable (or disable) XON/XOFF software flow control.
For a full list, consult the stty man page or BusyBox documentation.

Table 5.: Common stty Options and Settings.

Examples:

To display all current settings for the serial port /dev/ttyS0 :

stty -F /dev/ttyS0 -a

To display only the current speed of /dev/ttyS1 :

stty -F /dev/ttyS1 speed

To configure /dev/ttyS0 to 115200 bps, 8 data bits, no parity, 1 stop bit (8N1), and enable raw mode:

stty -F /dev/ttyS0 115200 cs8 -cstopb -parenb raw

Extending Router Functionality 88

11.2 Command-Line Utilities for Serial Ports

portd - Serial Port to TCP/UDP Redirector

The portd daemon is a utility that provides transparent data transfer between a serial line and a TCP or
UDP network connection. It can operate either as a server (listening for incoming network connections and
forwarding data to/from the serial port) or as a client (connecting to a remote network host and forwarding
data). This is often used for "Serial-to-Ethernet" or "Serial-over-IP" applications.
Synopsis:
portd -c <device> [-b <baudrate>] [-d <databits>] [-p <parity>] [-s <stopbits>]

[-l <split timeout>] [-4] [-h <hostname>] [-o <proto>] -t <port>
[-k <keepalive time>] [-i <keepalive interval>] [-j <inactivity timeout>]
[-n <reject new>] [-r <keepalive probes>] [-u user] [-x] [-z] [-f]

Extending Router Functionality 89

11.2 Command-Line Utilities for Serial Ports

Supported Options:

Option Description

-c <device> Required. Serial line device (e.g., /dev/ttyS0).

-b <baudrate> Baud rate (e.g., 115200). Default typically 9600.

-d <databits> Number of data bits (7 or 8). Default typically 8.

-p <parity> Parity: none, even, odd. Default typically none.

-s <stopbits> Number of stop bits (1 or 2). Default typically 1.

-l <split
timeout>

Data split timeout in milliseconds. If no data arrives from the serial port for this
timeout, buffered data is sent over the network. Default typically 50.

-4 Forced detection for RS-485 on an Expansion Port. (Advantech-specific functional-
ity).

-h <hostname> Remote hostname or IP address to connect to (client mode). If not specified, portd
runs in server mode.

-o <proto> Network protocol: tcp or udp.

-t <port> Required. TCP or UDP port number.

-k <keepalive
time>

TCP Keepalive: Time (seconds) of inactivity before sending the first keepalive
probe. Default: disabled.

-i <keepalive
intvl>

TCP Keepalive: Interval (seconds) between subsequent keepalive probes. (Often
named <keepalive interval> in help).

-j <inactivity
to>

Inactivity timeout in seconds. If no data is transferred on the network connection for
this period, the connection might be closed. (Often named <inactivity timeout>
in help).

-n <reject
new>

When acting as a server and a connection limit is reached (e.g., typically 1 client
by default if -N is not supported or set), this option might control how new incoming
connection attempts are handled (e.g., reject immediately). The exact behavior
should be verified.

-r <keepalive
probes>

TCP Keepalive: Number of unacknowledged probes before considering the con-
nection dead.

-u <user> Run portd as a specified user after starting (drops root privileges if started as root).

-x Use CD (Carrier Detect) line as an indicator of TCP connection status (server
mode).

-z Use DTR (Data Terminal Ready) line to control/reflect TCP connection status
(server mode).

-f Enable flow control. The type of flow control (hardware/software) might be auto-
detected or a default. For specific control (e.g., RTS/CTS vs XON/XOFF), underly-
ing system settings via stty might be needed if portd doesn’t offer finer granularity.

Table 6.: Supported portd options based on router’s help output.

Examples:
To run portd as a TCP server on port 1000, redirecting data to/from /dev/ttyS0 configured at 115200
bps, 8 data bits, no parity, 1 stop bit, and with flow control enabled, running it in the background:

portd -c /dev/ttyS0 -b 115200 -d 8 -p none -s 1 -f -o tcp -t 1000 &

Extending Router Functionality 90

11.3 Scripting Serial Communication with the um Python Module

To run portd as a TCP client, connecting to 192.168.1.100 on port 2000, forwarding data from /dev/ttyS1
(9600 bps, 8N1), and setting an inactivity timeout of 300 seconds:

portd -c /dev/ttyS1 -b 9600 -h 192.168.1.100 -o tcp -t 2000 -j 300 &

11.3 Scripting Serial Communication with the um Python Module

This example demonstrates how to use the Advantech um Python module to communicate over a serial
port (e.g., /dev/ttyS0) on the router. The Python script will be packaged as a Router App using the
ModulesSDK.

To run Python scripts on the router, the Python 3 or Python 3 Lite Router App must be installed from
the router’s web interface (Customization → Router Apps) or be part of the firmware.

Step 1: Writing the Python Script

We will create a simple Python script named serial_um_example.py . This script will open /dev/ttyS0 ,
send a command, attempt to read a response, and then print the response. For this example to fully work,
a device capable of responding must be connected to /dev/ttyS0 and configured with matching serial
parameters.

Extending Router Functionality 91

11.3 Scripting Serial Communication with the um Python Module

Source code for serial_um_example.py:

This file will be placed in ModulesSDK/modules/serial_um_example/source/serial_um_example.py .

#!/usr/bin/python3
import um
import sys # For exiting with error code

Define serial port parameters
SERIAL_DEVICE = b"/dev/ttyS0"
BAUD_RATE = 115200
DATA_BITS = 8
PARITY = b"N" # None
STOP_BITS = 1

Command to send and timeout for response
COMMAND_TO_SEND = b"ATI\r\n" # Example: AT command to request modem info
RESPONSE_TIMEOUT_SEC = 5

def main():
print(f"Attempting to open serial port: {SERIAL_DEVICE.decode()} at {BAUD_RATE} bps...")
fd = um.com_open(SERIAL_DEVICE, BAUD_RATE, DATA_BITS, PARITY, STOP_BITS)

if fd < 0:
print(f"Error: Failed to open serial port {SERIAL_DEVICE.decode()}. Error code: {fd}")
sys.exit(1)

print(f"Serial port opened successfully (fd: {fd}). Sending command...")

try:
received_data = um.com_xmit(fd, COMMAND_TO_SEND, RESPONSE_TIMEOUT_SEC)

print(f"Sent to {SERIAL_DEVICE.decode()}: {COMMAND_TO_SEND.decode(errors='replace').strip()}")

if received_data:
print(f"Received from {SERIAL_DEVICE.decode()}:")
Print byte-by-byte hex and ASCII for detailed view if needed
print("Hex: " + " ".join(f"{b:02x}" for b in received_data))
print(f"ASCII: {received_data.decode(errors='replace')}")

else:
print("No data received within the timeout period.")

except Exception as e:
print(f"An error occurred during serial communication: {e}")

finally:
print(f"Closing serial port (fd: {fd})...")
um.com_close(fd)
print("Serial port closed.")

if __name__ == "__main__":
main()

How the Script Works

The script performs the following actions:

• Imports the necessary um module (and sys for exit codes).

• Defines constants for serial port parameters, the command to send (an AT command ATI which
typically requests modem identification), and a timeout for waiting for a response.

• The main() function is the entry point.

• It calls um.com_open() to open and configure the specified serial port.

Extending Router Functionality 92

11.3 Scripting Serial Communication with the um Python Module

• If opening fails (indicated by a negative file descriptor fd), it prints an error and exits.

• If successful, it calls um.com_xmit() to send the COMMAND_TO_SEND and wait up to
RESPONSE_TIMEOUT_SEC seconds for a response.

• It then prints the sent command and the received data (if any). The received data is decoded from
bytes to a string, replacing any non-decodable characters.

• A try...finally block ensures that um.com_close() is called to close the serial port, even if
an error occurs during communication.

• The standard if __name__ == "__main__": idiom ensures main() is called when the script is
executed directly.

Step 2: Creating the Router App Package Files (Simplified)

This step involves preparing the necessary files for the ModulesSDK to package the Python script as
a Router App. For this simple command-line script, we do not need complex init , install , or
uninstall scripts. The SDK’s default packaging will usually place the script in a bin/ directory within

the Router App’s installation path (e.g., /opt/<app_name>/bin/). We will also omit metadata files like

name and version for this basic example, though they are recommended for more complete Router
Apps.

The primary file we need is our Python script itself (serial_um_example.py), which should be placed

in the module’s source/ directory within the ModulesSDK.

Step 3: Preparing Makefiles for ModulesSDK Integration

The Advantech ModulesSDK uses a Makefile-based build system. To integrate our serial_um_example
Python application:

1. Create the module directory: If it doesn’t already exist, create a directory for your new module within
the SDK. For example: ModulesSDK/modules/serial_um_example/ .

2. Place the Python script: Copy or move your serial_um_example.py script into

ModulesSDK/modules/serial_um_example/source/serial_um_example.py .

3. Copy the main Makefile template: Copy the generic module Makefile from
ModulesSDK/modules/template/Makefile to your new module’s directory:

ModulesSDK/modules/serial_um_example/Makefile . This main Makefile generally handles the
overall process of building the module for different platforms and creating the .tgz package. It

usually calls the Makefile within the source/ directory.

4. Create the source Makefile: Inside the ModulesSDK/modules/serial_um_example/source/ di-

rectory, create a new Makefile with the following content. This Makefile defines how your Python
script and any associated um module dependencies are installed into the Router App package.

Extending Router Functionality 93

11.3 Scripting Serial Communication with the um Python Module

Content for ModulesSDK/modules/serial_um_example/source/Makefile:

include ../../../Rules.mk

all:
@true

clean:
@true

install:
@install -d $(DESTDIR)/bin
@install -m 644 $(SDKDIR)/library/$(OBJDIR)/*.so $(DESTDIR)/bin/
@install -m 644 $(SDKDIR)/library/*.py $(DESTDIR)/bin/
@install -m 755 *.py $(DESTDIR)/bin/

Resulting Directory Structure for the serial_um_example Module within SDK:

After these steps, the directory structure for your serial_um_example module within the ModulesSDK
should look like this:

ModulesSDK/
|-- Rules.mk (and other root SDK files)
|-- library/ (Example location for um.py and libum.so)
| |-- um.py
| |-- v4/ (Platform-specific subdirectories)
| | `-- libum.so (or libum.v4.so)
| |-- v4i/
| | `-- libum.so
| |-- ...
|-- modules/
| |-- serial_um_example/
| | |-- source/
| | | |-- serial_um_example.py (Your Python script)
| | | `-- Makefile (Source Makefile specific to this module)
| | `-- Makefile (Main module Makefile, copied from template)
| |-- template/
| | `-- Makefile (Original template main Makefile)
| |-- ... (Other example modules)
`-- ... (Other SDK directories)

Step 4: Building the Router App Package

Once the Python script and Makefiles are correctly placed within the ModulesSDK structure:

1. Navigate to the SDK’s root directory:

user@machine:$ cd /path/to/your/ModulesSDK/

2. Build for all modules: Often, simply running make from the root of the SDK might build all modules
for all default platforms if the main SDK Makefile is structured that way.
user@machine:/ModulesSDK$ make

Extending Router Functionality 94

11.3 Scripting Serial Communication with the um Python Module

The SDK’s build system will invoke the Makefiles you prepared. The install target in your
source/Makefile will copy serial_um_example.py , um.py , and the appropriate libum.so into

the staging area. The main module Makefile will then package these files into a *.tgz archive.

Step 5: Uploading and Testing the Router App

Upload the generated *.tgz archive file for your target platform (e.g., serial_um_example.v4.tgz)
to your Advantech router. This is typically done via the router’s web interface, in the section Customization
→ Router Apps.

After the Router App is installed by the system:

• The Python script, along with um.py and libum.so , should be installed into a directory under

/opt/ , typically /opt/serial_um_example/bin/ .

• Test from the router’s CLI:

◦ Run script from any location using the full path:

/opt/serial_um_example/bin/serial_um_example.py

◦ Observe the output. The script will attempt to communicate with /dev/ttyS0 . If a device is
connected and responds to "ATI", you should see its response. Otherwise, you’ll see a "No data
received" message or an error if the port cannot be opened.

This example provides a basic framework for packaging a Python script that uses the um module as
a Router App. For more complex applications, you might need to include more sophisticated install
/ uninstall scripts, manage dependencies, or handle background services with an init script.

Extending Router Functionality 95

12. USB Interface

12.1 Storage Access – USB Flash and SD Card

Connecting a USB device or SD card works in the standard Linux way. When you connect a USB Flash
drive to the router, its device node will appear in the /dev directory. You can view details about detected
devices using the dmesg command.

• USB Flash drive partitions typically appear as /dev/sda1 . You can mount them using the mount
command (e.g., mount -t vfat /dev/sda1 /mnt).

• Some USB-to-Serial converters are supported and will show up as /dev/ttyUSB0 , /dev/ttyUSB1
, etc. (See Section 12.4 Supported USB Serial Converter Chips).

• An SD Card inserted into the router’s reader usually appears with partitions like /dev/mmcblk0p1 .

You can mount it similarly (e.g., mount -t vfat /dev/mmcblk0p1 /mnt).

12.2 Mounting a USB Flash Drive Partition

To access files on a USB flash drive partition within the router’s system, it must first be mounted. Follow
these steps:

1. Connect the USB Flash Drive: Plug the USB flash drive into the router’s USB port.

2. Identify the Device Partition: Run dmesg | tail to display recent system messages. Look for

lines indicating the new device name (e.g., sda) and its partitions (e.g., sda1). Note the partition
identifier, such as /dev/sda1 .

3. Create a Mount Point (Optional but Recommended): Create an empty directory where the filesys-
tem will be mounted. Using /mnt is common practice. mkdir -p /mnt/usb

4. Mount the Partition: Use the mount command to attach the partition to the mount point. The
system often auto-detects the filesystem type. mount /dev/sda1 /mnt/usb

5. Verify Successful Mount: List mounted filesystems using mount | grep /mnt/usb or check the

contents of the mount point directory (ls /mnt/usb) to confirm access.

6. Unmount the Partition: Before physically removing the drive, unmount it using the mount point or
device name to prevent data corruption. umount /mnt/usb or umount /dev/sda1

Once unmounted, the USB flash drive can be safely removed. Ensure the correct device name and
filesystem type (if specifying manually) are used.

If the mount command fails, double-check the device name (/dev/sda1) and try specifying the filesystem
type with the -t option: mount -t vfat /dev/sda1 /mnt/usb .

Extending Router Functionality 96

12.3 Automount USB Flash Disk

12.3 Automount USB Flash Disk

This script provides a basic mechanism to automatically mount the first partition of a detected USB flash
drive to /mnt/flash when inserted, and unmount it when removed. It requires firmware version 4.0.0 or
later. The monitoring script should be saved to a file (e.g., /root/automount.sh) and launched via the
Startup Script.

This example demonstrates how to create a background script that monitors for the presence of a USB
flash drive and automatically mounts/unmounts its first partition.

Monitoring Script (automount.sh)

Save the following code into a file, for example, /root/automount.sh .

#!/bin/sh
#
LAST=0
i=0
while true
do
flsh=`cat /proc/diskstats |awk '/8\x20\x20\x20\x20\x20\x20\x201/ {print $3}'`
if [$flsh]; then

i=1
else

i=0
fi
if [$LAST != $i]; then

LAST=$i
if [$i = 1]; then

echo "Mount flash disk."
if [-d /mnt/flash]; then

mount /dev/$flsh /mnt/flash
else

mkdir /mnt/flash
mount /dev/$flsh /mnt/flash

fi
else

echo "UMOUNT flash disk."
umount /mnt/flash
rmdir /mnt/flash

fi
fi
sleep 2
done

Extending Router Functionality 97

12.3 Automount USB Flash Disk

Startup Script

Add the following line to your Startup Script to launch the monitoring script in the background when the
router boots. Ensure the path (/root/automount.sh) matches where you saved the monitoring script.

#!/bin/sh

Launch the automount script in the background
sh /root/automount.sh &

How It Works

• The Startup Script simply executes the saved automount.sh script in the background using sh ... & .

• The automount.sh script runs an infinite loop (while true).

• Inside the loop, it reads /proc/diskstats , a kernel interface providing disk I/O statistics.

• It uses awk to search for a line matching the pattern / 8 1 / . This pattern specifically looks for:

◦ A space.

◦ The major device number 8 (commonly used for SCSI/SATA/USB block devices like /dev/sdX).

◦ Exactly seven spaces (x20 represents a space in the original awk pattern).

◦ The minor device number 1 (commonly representing the first partition, e.g., sda1).

If a matching line is found, awk prints the third field ($3), which is the device name (e.g., sda1).

• The device name is stored in the flsh variable.

• if ["$flsh"] : This checks if the flsh variable is non-empty. If the device partition was
found, the variable will contain its name (like sda1), and the condition is true, setting i to 1
(detected). Otherwise, i is set to 0 (not detected). Quotes around "$flsh" prevent potential
errors if the variable is empty.

• if [$LAST != $i] : The script compares the current detection state (i) with the state from
the previous loop iteration (LAST). It only proceeds if the state has changed (device inserted or
removed).

• LAST=$i : Updates the stored state for the next iteration.

• If state changed to 1 (Device Detected):

◦ Prints "Mount flash disk."

◦ Checks if the directory /mnt/flash exists using [! -d ...] . If it doesn’t exist, it creates
it using mkdir .

◦ Executes mount /dev/$flsh /mnt/flash to mount the detected partition (e.g., /dev/sda1
) onto the /mnt/flash directory. Filesystem type is typically auto-detected.

• If state changed to 0 (Device Removed/Not Detected):

◦ Prints "UMOUNT flash disk."

◦ Executes umount /mnt/flash to unmount the filesystem.

Extending Router Functionality 98

12.3 Automount USB Flash Disk

◦ Executes rmdir /mnt/flash to remove the mount point directory. Note that rmdir will fail
if the directory is not empty (e.g., if the unmount failed or files were created outside the mount).

• sleep 2 : The script pauses for 2 seconds before repeating the loop.

The method used to detect the USB drive by parsing /proc/diskstats for the specific pattern

/ 8 1 / is very basic and potentially fragile. It will likely only work for the first partition (sda1
) of the first detected USB drive. It may fail if the drive uses different major/minor numbers, has
multiple partitions you wish to access, or if other block devices interfere. More robust solutions often
involve using udev rules or dedicated automount daemons if available on the system.

After adding the automount.sh script (e.g., to /root/) and configuring the Startup Script to launch
it, reboot the router. When you insert a compatible USB flash drive, its first partition should automatically
become accessible under /mnt/flash .

Extending Router Functionality 99

12.4 Supported USB Serial Converter Chips

12.4 Supported USB Serial Converter Chips

Advantech routers include built-in kernel support (drivers) for several common USB-to-serial converter
chipsets. When an adapter using one of these chips is connected, the corresponding kernel module should
load automatically, and the adapter should appear as a serial device node in the /dev directory (e.g.,
/dev/ttyUSB0).

Supported chip families generally include:

• FTDI: FT232R, FT232H, FT2232, FT4232, FT230X, etc. (Driver: ftdi_sio)

• Silicon Labs: CP210x series (e.g., CP2101, CP2102, CP2104) (Driver: cp210x)

• Prolific: PL2303 (various versions, support might vary) (Driver: pl2303)

• CDC-ACM: Standard class for many modern USB serial devices (e.g., based on CH340/CH341 -
support might depend on kernel config, some newer Arduino boards). (Driver: cdc-acm)

When you connect a supported adapter, the corresponding kernel modules load automatically, and the
device appears as /dev/ttyUSB0 , /dev/ttyUSB1 , etc.

You can verify this in console with: dmesg | grep -i ttyUSB

12.5 Using an Unsupported Serial Converter Chip

In some cases, you may need to use a USB-to-Serial converter whose specific Vendor ID (VID) and
Product ID (PID) combination is not natively recognized by the pre-loaded kernel drivers (like ftdi_sio
or pl2303), even if the underlying chip is technically supported by the driver. Every USB device is
identified by these two hexadecimal numbers:

• Vendor ID (VID): Identifies the device manufacturer (e.g., 0403 for FTDI).

• Product ID (PID): Identifies the specific product model (e.g., 6001 for FT232R).

Finding the VID and PID
You can discover the VID and PID of your USB device in several ways:

• On a Linux PC: Use the lsusb command. The output lists connected devices with their IDs in
VID:PID format. Note that lsusb command is not available on the router itself.

• On Windows: Open Device Manager, find the device (it might appear as an unknown device or
under "Ports (COM & LPT)" or "Universal Serial Bus controllers"), right-click, select Properties, go
to the Details tab, and choose "Hardware Ids" from the Property dropdown. Look for a string like
USB\VID_xxxx&PID_yyyy .

• On the Router: Check kernel messages using dmesg immediately after plugging in the device.

Look for lines like usb 1-1: new full-speed USB device number X using ... and potentially

lines showing idVendor=xxxx, idProduct=yyyy .

Extending Router Functionality 100

12.5 Using an Unsupported Serial Converter Chip

Dynamically Enabling the Device via sysfs
Once you have the VID and PID (as four-digit hexadecimal numbers without the ‘0x‘ prefix) and know

the appropriate kernel driver module name for the chip type (e.g., ftdi_sio , pl2303 , cp210x), you

can attempt to dynamically tell the driver to handle this specific VID/PID combination using the new_id
interface within the sysfs filesystem:

Syntax: echo <VID> <PID> > /sys/bus/usb-serial/drivers/ftdi_sio/new_id

Replace <VID> and <PID> with the four-digit hex values (without 0x).

Example (for VID=0403, PID=d921):
echo 0403 d921 > /sys/bus/usb-serial/drivers/ftdi_sio/new_id

After running this command, check dmesg again. If successful, you should see messages indicating

the driver has claimed the device and created a serial port device node (e.g., /dev/ttyUSB0). If not, the
driver might not support the underlying chip type.

This dynamic binding is temporary and will be lost on reboot. To make it persistent, this command
must be executed from a Startup Script or a Router App’s init script each time the router boots or the
device is connected.

Extending Router Functionality 101

13. User LED

13.1 led Utility

The led utility provides basic command-line control over the user-controllable LED (often labeled
"USR" or similar) typically found on the router’s front panel.

Synopsis

led [on | off]

Option Description
on Turns the USR LED on (solid state).

off Turns the USR LED off.

Table 7.: led Utility Options

Extending Router Functionality 102

13.2 Check IPsec Connection Status via LED

13.2 Check IPsec Connection Status via LED

This script monitors the status of a specific IPsec tunnel and uses the USR LED to indicate whether the
tunnel is established. It utilizes the swanctl command (part of strongSwan) and standard Linux utilities
like awk and grep . The script should be saved to a file (e.g., /root/ipsec_stat.sh) and launched
from the Startup Script.

This example provides a simple script to visually indicate the status of an IPsec connection using the
router’s USR LED. It checks the status every 5 seconds.

Monitoring Script (ipsec_stat.sh)

Save the following code into a file, for example, /root/ipsec_stat.sh . Adjust the num variable
to match the IPsec connection number you want to monitor (typically 1, 2, 3, or 4, corresponding to the
configuration order in the GUI).

#!/bin/sh
ipsec_stat.sh - Monitors IPsec tunnel status and controls USR LED

num=1 # number of IPSec connection to monitor [1,2,3,4]

while true
do

List Security Associations and filter for the desired IPsec connection
then check if the line contains "INSTALLED"
/usr/libexec/ipsec/swanctl --list-sas | awk "/ipsec$num/" | grep INSTALLED
sts=$? # Capture the exit status of grep (0 if INSTALLED found, non-zero otherwise)

Control USR LED based on the status
if ["$sts" = "0"]; then

led on # Turn LED ON if tunnel SA is INSTALLED
else

led off # Turn LED OFF otherwise
fi

Wait before next check
sleep 5

done

Extending Router Functionality 103

13.2 Check IPsec Connection Status via LED

Startup Script

Add the following line to your Startup Script (Configuration → Scripts → Startup Script) to launch the
monitoring script in the background when the router boots. Ensure the path (/root/ipsec_stat.sh) is
correct.

#!/bin/sh

Launch the IPsec status monitoring script in the background
sh /root/ipsec_stat.sh &

exit 0

How It Works

• The Startup Script executes the saved ipsec_stat.sh script in the background using sh ... & .

• The ipsec_stat.sh script first sets a variable num to specify which IPsec connection instance
(1-4) to monitor.

• It enters an infinite loop (while true).

• Inside the loop:

◦ /usr/libexec/ipsec/swanctl --list-sas : This command lists the current IPsec Security
Associations (SAs), providing detailed status information for active tunnels.

◦ | awk "/ipsec$num/" : The output of swanctl is piped to awk . This filters the lines to

only include those containing the specific connection name pattern (e.g., ipsec1 if num=1).

◦ | grep INSTALLED : The filtered output is then piped to grep to check if the line contains
the word "INSTALLED". A successfully established SA typically shows this state.

◦ sts=$? : The exit status of the grep command is captured in the variable sts . grep
returns 0 if it finds a match ("INSTALLED" was found for the specified tunnel), and a non-zero
value otherwise.

◦ if ["$sts" = "0"] : The script checks if the exit status is 0.

* If sts is 0 (tunnel is installed/established), it executes led on to turn the USR LED on.

* If sts is non-zero (tunnel is not installed or the line wasn’t found), it executes led off
to turn the USR LED off.

◦ sleep 5 : The script pauses for 5 seconds before repeating the check.

• This provides a continuous visual indication of the specified IPsec tunnel’s status via the USR LED.

After creating the ipsec_stat.sh script (e.g., in /root/), setting the correct IPsec connection number
in the num variable, adding the launch command to the Startup Script, and rebooting the router, the USR
LED should light up when the monitored IPsec tunnel is established.

Extending Router Functionality 104

13.3 Indicate OpenVPN Status via LED

13.3 Indicate OpenVPN Status via LED

Advantech routers lack an OpenVPN "management" port, making it difficult to precisely determine if the
VPN connection is fully established. However, OpenVPN supports executing scripts when the tunnel pro-
cess starts (–up) and stops (–down). This example uses these scripts to control the USR LED, providing
a visual indication that the OpenVPN process is running, though not necessarily that the connection is
fully established and passing traffic.

This example uses simple scripts triggered by OpenVPN’s start and stop events to control the router’s
USR LED.

Up Script (ledon.sh)

Create a file, for example /root/ledon.sh , with the following content:

#!/bin/sh
ledon.sh - Executed by OpenVPN on --up event
led on

Down Script (ledoff.sh)

Create another file, for example /root/ledoff.sh , with the following content:

#!/bin/sh
ledoff.sh - Executed by OpenVPN on --down event
led off

Configuration

1. Create the two script files (ledon.sh and ledoff.sh) as shown above.

2. Make them executable: chmod +x /root/ledon.sh /root/ledoff.sh

3. Copy these script files to a persistent location on the router (e.g., /root/).

4. In the OpenVPN configuration settings within the router’s web GUI (Configuration -> VPN -> Open-
VPN), add the following line to the Extra Options field:

script-security 2
up /root/ledon.sh
down /root/ledoff.sh

Note: Enter each option on a new line in the Extra Options field.

How It Works

• The script-security 2 option allows OpenVPN to call external scripts. It’s crucial for security
that this level is used, and the scripts themselves are secure.

• The up /root/ledon.sh option tells OpenVPN to execute the ledon.sh script after the tun-
nel device (e.g., ‘tun0‘) has been successfully opened and configured. This script simply runs the
led on command, turning the USR LED on.

Extending Router Functionality 105

13.3 Indicate OpenVPN Status via LED

• The down /root/ledoff.sh option tells OpenVPN to execute the ledoff.sh script when the
OpenVPN tunnel process stops or the tunnel device is closed. This script runs led off , turning
the USR LED off.

• This setup provides a basic visual cue: the LED is on when the OpenVPN process believes the tunnel
is up, and off when it’s stopped or down.

As noted, this method only indicates if the OpenVPN process has successfully executed its ’up’ script.
It does not guarantee that the VPN tunnel connection itself is successfully established, authenticated,
or functional for passing traffic.

Extending Router Functionality 106

Part V.

Constraints

Extending Router Functionality 107

14. S1 Router Programming Considerations

The S1 Router line has specific characteristics affecting Router App development, primarily related to its
security model and read-only filesystem.

14.1 Extending the Read-Only Root Filesystem

On S1 Routers, the root filesystem is mounted read-only and cannot be directly modified. However,
functionality can be extended using Router Apps, which are installed as read-only SquashFS overlays
mounted over specific directories like /opt and potentially /usr .

Other writable partitions, such as the persistent /var and volatile /run and /tmp directories,
are mounted with the "noexec" option. This prevents the execution of binaries directly from these loca-
tions. Therefore, executable files (binaries, scripts intended for direct execution) must be packaged within
a Router App and placed in appropriate locations within the overlay (e.g., /opt/<RAname>/bin).

Examples example8 and example9 within the ModulesSDK demonstrate how to structure a Router

App to add files to the /usr directory via the overlay mechanism. To build such an example (e.g., for the
RBv2i-S1 platform):

cd modules/example8
make PLATFORM=RBv2i-S1

This build process generates a *.raw file. This .raw file is the Router App package for S1 platforms
and can be installed using the standard Router App installation procedure in the web interface.

14.2 Adding JavaScript and CSS to the S1 Web Administration Interface

The S1 router’s web server enforces a strict Content-Security-Policy (CSP). Inline JavaScript code and
CSS styles are generally blocked unless specific mechanisms are used. To include custom JavaScript
or CSS within web pages generated by your Router App (e.g., CGI scripts) on S1 routers, they must be
embedded within <script> or <style> tags that include a dynamically generated nonce (number
used once) attribute.

The ModulesSDK (version 2.1.1 and later) provides helper functions, um_html_js and um_html_css ,
designed to handle this correctly for C-based CGI. These functions automatically incorporate the required
nonce when embedding scripts or styles. Example usage within a C-based CGI script using the SDK:

// Example: Set focus on the username field after the page loads
um_html_js("document.f.username.focus();\n");

// Example: Add a simple CSS rule
um_html_css(".my-class { color: blue; }\n");

For Python CGI scripts on S1, ensure your HTML generation logic can incorporate a nonce if provided
by the system or the um Python module for S1.

Extending Router Functionality 108

https://bitbucket.org/bbsmartworx/modulessdk
https://content-security-policy.com/
https://bitbucket.org/bbsmartworx/modulessdk

14.3 Changing System Configuration Programmatically on S1 Routers

14.3 Changing System Configuration Programmatically on S1 Routers

Configuration files on S1 Router line devices include an integrity check (checksum) to prevent unautho-
rized modifications. To change system configuration settings from within a Router App script, you cannot
simply edit the configuration files directly. Instead, follow this procedure:

1. Create a partial configuration backup file (e.g., /tmp/backup.cfg) containing only the settings you

wish to change, formatted correctly (e.g., SECTION_OPTION='value').

2. Calculate the SHA512 hash of this partial backup file and append it to the file itself in the format
INTEGRITY=CFG_HASH=<hash_value> .

3. Use the restore command (with appropriate privileges, usually via sudo if available/required in
the script context) to apply the changes from this integrity-checked partial backup file.

Example script snippet:

#!/bin/sh
Create a temporary partial config file
cat << EOF > /tmp/backup.cfg
NETWORK_LAN_IPADDR='192.168.1.100'
NETWORK_LAN_NETMASK='255.255.255.0'
EOF

Calculate hash and append integrity line
Note: awk field might be $1 if output is just the hash
HASH_VAL=$(openssl sha512 /tmp/backup.cfg | awk '{print $2}')
echo "INTEGRITY=CFG_HASH=$HASH_VAL" >> /tmp/backup.cfg

Apply the configuration change (requires appropriate permissions)
The use of 'sudo' depends on the execution context of the script.
If the script itself runs as root (e.g. some init scripts), sudo might not be needed.
Otherwise, ensure the user/context has sudo rights for 'restore'.
sudo restore /tmp/backup.cfg

Clean up temporary file
rm /tmp/backup.cfg

Note: Ensure the user/context running this script has permissions to execute sudo restore . The exact
mechanism may vary depending on how your script is invoked by the system.

Extending Router Functionality 109

15. Hardware Constraints

15.1 Non-volatile Memory

Routers are embedded systems with limited resources. Efficient use of storage, RAM, and CPU is crucial.

Router Apps are installed in the /opt directory. Additionally, persistent data that needs to survive

reboots but is generated or modified at runtime can often be stored in the /var/data directory. The type
and size of non-volatile memory available for these directories vary depending on the router platform, as
shown in Table 8 and Table 9.

Parameter v2i v2i with
eMMC

v3 v3 with
eMMC

v4 v4i

Memory type NOR eMMC MRAM eMMC eMMC eMMC

File system JFFS2 ext4 JFFS2 ext4 ext4 ext4

Part. size 2 MiB 512 MiB 128 KiB 512 MiB 512 MiB 474 MiB

Table 8.: Characteristics of the /var/data Directory Partition

Parameter v2i v2i with
eMMC

v3 v3 with
eMMC

v4 v4i

Memory type NOR eMMC NOR eMMC eMMC eMMC

File system JFFS2 ext4 JFFS2 ext4 ext4 ext4

Part. size 12 MiB 814 MiB 128 MiB 838 MiB 838 MiB 2.16 GiB

Table 9.: Characteristics of the /opt Directory Partition

On platforms where the /var/data partition uses MRAM and is 128 KiB in size (e.g., standard v3
routers), it is strongly recommended that a Router App uses no more than 64 KiB of this space. The
remaining space is required by the router’s operating system for its own persistent data storage.

Notes:

• The JFFS2 filesystem used on some NOR flash partitions supports compression. This means you
might be able to store more data than the raw partition size suggests if the data compresses well.

• It is standard practice for a Router App needing persistent runtime data storage to create its own
subdirectory within /var/data , e.g., /var/data/<RAname> . This should typically be done in the
install or init start script.

• The system typically automatically deletes the /var/data/<RAname> subdirectory (if it exists) when
the corresponding Router App is uninstalled.

• Cleanup of any other files or subdirectories created by the Router App outside of /opt/<RAname>
or /var/data/<RAname> is the responsibility of the Router App author (usually handled in the
uninstall script).

15.2 RAM Utilization

Refer to Table 10 for the amount of RAM available on different router platforms. Router Apps can
use standard dynamic memory allocation functions (e.g., malloc in C/C++, equivalent mechanismsExtending Router Functionality 110

15.3 CPU Performance Considerations

in Python). Exercise caution regarding memory consumption; ensure your Router App does not deplete
system memory, which could negatively impact router stability and performance.

Parameter v2i routers v3 routers v4 routers v4i routers
RAM size 128 MB 512 MB 1024 MB 1024 MB

Table 10.: RAM Memory Parameters

15.3 CPU Performance Considerations

There are CPU parameters for different router platforms listed in the Table 11. When developping appli-
cations consider this CPU constraints:

• Choose the development language appropriate for the task. C/C++ generally offers better perfor-
mance for CPU-intensive operations than interpreted languages like Python or shell scripts.

• Avoid busy-waiting or tight loops that can consume excessive CPU.

• Offload complex computations to external systems if feasible and appropriate for your application.

• Profile your application if performance issues arise.

Parameter v2i routers v3 routers v4 routers v4i routers
CPU SAM9X60 AM3352 ARMv8-A ARMv8-A

Architecture arm 5TEJ arm v7 arm v8 arm v8

Core ARM926EJ-S Cortex-A8 Cortex-A72 Cortex-A53

CPU power 660 DMIPS 2000 DMIPS 4.7 DMIPS/MHz 2.3 DMIPS/MHz

Table 11.: CPU Architecture

Understanding Cross-Compilation and Compiler Flags

Cross-compilation is the process of compiling code on one system (the development host, e.g., x86
Linux) to run on a different system (the target router, e.g., ARM). This requires a toolchain (compiler, linker,
libraries) built for the target architecture.

If you choose to use a different cross-compiler than the ones officially provided (see section 8.2), or if
you need to fine-tune build parameters, ensure you use appropriate compiler flags for the target platform to
generate compatible binaries. Based on the router platform, use the following flags:

v2i routers (ARMv5TEJ): -march=armv5te -mtune=arm926ej-s -mfloat-abi=soft
v3 routers (ARMv7-A / Cortex-A8): -march=armv7-a -mtune=cortex-a8 -mfpu=vfpv3 -mfloat-abi=softfp
v4 routers (ARMv8-A / Cortex-A72): -march=armv8-a+crc+crypto -mtune=cortex-a72
v4i routers (ARMv8-A / Cortex-A53): -march=armv8-a+crc+crypto -mtune=cortex-a53

Extending Router Functionality 111

Part VI.

Custom Firmware Compilation

Extending Router Functionality 112

16. Getting Started with Custom Firmware
Compilation

16.1 Overview of Custom Firmware for Advantech Routers

Compiling custom firmware for Advantech routers involves modifying or rebuilding components of the
router’s operating system (ICR-OS). This can range from recompiling individual open-source utilities to, in
theory, building a more comprehensive firmware image. This process is intended for advanced users who
understand the implications and risks involved.

It is important to note that while it might be technically possible to build a complete firmware image using
the provided sources, the router hardware will typically reject firmware images that are not digitally signed
by Advantech. Therefore, the primary focus of custom compilation for end-users is often the modification
or replacement of individual open-source components.

16.2 Prerequisites and Essential Knowledge

To embark on custom firmware compilation or modification of its components, certain prerequisites are
essential:

• Operating System: A 64-bit Linux-based operating system is necessary for the build environment.
This can be a dedicated physical machine or a virtual machine.

• Technical Skills: Familiarity with the Linux command line, basic C/C++ programming concepts (if
modifying source code), and an understanding of build systems (like Make) are highly beneficial.

• Hardware Access: Access to the target Advantech router for testing and deployment is required.

Users are expected to have the necessary expertise to manage their Linux development environment.

16.3 Obtaining Firmware Source Code and Build System Components

All necessary development resources, including source code for open-source components and toolchains,
are typically available through Advantech’s Bitbucket repositories.

If your goal is to rebuild or modify an open-source component included in ICR-OS, you must first down-
load the source code corresponding to your specific router firmware version. This can be found on the
Advantech ICR Source Code page. To determine your firmware version, navigate to the router’s web in-
terface, select General from the left menu, and check the System Information page. The firmware version
follows a major.minor.patch format (e.g., 6.1.5). The corresponding source archive will typically be named
similarly (e.g., firmware-6.1.5-src.tar).

The essential first step for any C/C++ development, including modifying firmware components, is to obtain
and set up the appropriate cross-compiler for your target router platform. This enables you to generate
executable binaries on your development machine that can run on the router. Details on acquiring and
setting up the cross-compiler are provided in Chapter 8.3 SDK (Software Development Kit) (within the
Router Apps part of this manual).

Extending Router Functionality 113

https://bitbucket.org/bbsmartworx/
https://icr.advantech.com/source-code

17. Preparing the Build Environment

17.1 Setting Up the Development Host System

The instructions for setting up the build environment and its prerequisites have been validated on Ubuntu
and Debian distributions. If you are using an RPM-based distribution (such as Fedora, which is also
suitable), you will need to adapt the package installation commands to use your system’s package manager
(e.g., dnf or yum). Package names for dependencies might also differ slightly across distributions.

17.2 Setting Up the Cross-Compilation Toolchain

As mentioned in Section 16.3, a cross-compiler specific to your target Advantech router platform is cru-
cial. This toolchain allows your development host (e.g., an x86-64 Linux machine) to compile code that will
execute on the router’s different processor architecture (typically ARM-based).

Please refer to Chapter 8.3 SDK (Software Development Kit) for detailed instructions on downloading,
installing, and configuring the appropriate cross-compiler toolchain provided by Advantech. Ensure the
toolchain’s binaries are accessible in your system’s PATH environment variable.

17.3 Configuring the Build System

This section would typically describe how to use tools like menuconfig or similar configuration interfaces
if provided with the firmware source package to select components, features, and target platforms before
starting the build process.

17.4 Understanding the Build Directory Structure

This section would describe the layout of the firmware source code directory, highlighting important sub-
directories such as those containing package sources, kernel sources, toolchain integration, build scripts,
and output locations for compiled binaries and images.

Extending Router Functionality 114

18. Building the Custom Firmware Image
Components

18.1 The Firmware Build Process: Step-by-Step

Detailed build instructions for specific components are usually provided within the README file included in
the downloaded source code archive for that component or the overall firmware source package. Generally,
this involves navigating to the correct source directory and using make with appropriate targets.

18.2 Building and Integrating Open-Source Components

When rebuilding or modifying an open-source component from the ICR-OS sources:

• Locate the Component: Identify the specific component’s source directory within the downloaded
firmware source archive.

• Consult README: Detailed build instructions for individual components are typically provided within
a README file in their respective source directories or in a general README for the entire source
package.

• Advantech Modifications: Any modifications made by Advantech to the original open-source com-
ponents are usually supplied as distinct patch files within the archive. This allows for easy identifica-
tion and understanding of the changes applied by Advantech.

• Compilation: Follow the provided instructions to compile the component using the prepared cross-
compilation toolchain. This usually involves standard commands like make .

The output will be the recompiled binary, library, or other files associated with that component.

18.3 Customizing the Linux Kernel (If Applicable)

Modifying the Linux kernel is a highly advanced task. If undertaken, it would involve obtaining the kernel
source specific to the router, configuring it using kernel configuration tools (e.g., make menuconfig within
the kernel source directory), compiling it with the cross-compiler, and then integrating the new kernel image.
Replacing the kernel is extremely risky and can easily lead to an unbootable device.

18.4 Generating and Locating Firmware Image Files

When you recompile individual open-source components, the output is typically the specific binary or
library file (e.g., an executable utility, a .so shared library). These files will be located in the build
output directory specified by the component’s build system, often within a subdirectory related to the target
architecture.

As stated earlier, building a complete, digitally signable firmware image for direct flashing via standard
update mechanisms is generally not feasible for end-users due to signature requirements. The process
described here focuses on replacing individual, uncritical components.

Extending Router Functionality 115

18.5 Troubleshooting Common Build Issues

18.5 Troubleshooting Common Build Issues

Common build issues include:

• Incorrectly configured cross-compiler path.

• Missing development libraries or tools on the host system (install them using your distribution’s pack-
age manager).

• Incompatibility between the source code version and the toolchain.

• Typos in Makefiles or configuration scripts if modifications were made.

Always check the error messages carefully and consult the README files.

Extending Router Functionality 116

19. Installing and Managing Custom Firmware
Components

19.1 Methods for Installing Built Firmware Components

After successfully building a component according to the instructions in the source archive’s README
file, the resulting binary or library files must be copied onto the target router’s filesystem. This typically
involves overwriting the original files. This process usually requires root access to the router, commonly
achieved via SSH.

General Procedure (Non-S1 Routers):

1. Ensure you have root access to the router (e.g., via SSH).

2. Identify the location of the original component on the router’s filesystem.

3. It is highly recommended to back up the original file before overwriting it.

4. Use a secure copy tool (like scp) to transfer the newly built file from your development machine to
the appropriate location on the router, overwriting the original.

5. Verify file permissions and ownership of the newly copied file match the original.

6. Reboot the router or restart the relevant service for the changes to take effect (depending on the
component).

S1 Router Line Devices: For S1 Router line devices, which feature a read-only root filesystem, installing
custom components by directly overwriting files in system directories is generally not possible. Instead,
such components often need to be packaged into a Router App that utilizes an overlay mechanism to
present the modified files to the system. This is described in more detail in Chapter 14.1 Extending the
Read-Only Root Filesystem.

19.2 Initial Boot-up and System Verification

After replacing a component and rebooting (if necessary):

• Check system logs for any new errors.

• Test the functionality related to the replaced component.

• If a utility was replaced, try running it from the command line with relevant options.

Extending Router Functionality 117

19.3 Important Note on Running Custom Firmware Components

19.3 Important Note on Running Custom Firmware Components

Modifying or replacing standard firmware components with custom-built versions carries significant risks
and consequences. Please consider the following points carefully:

• Even minor modifications to standard utilities or libraries can have unintended side effects, potentially
disrupting system stability, breaking features, or causing router malfunctions.

• Advantech CZ R&D bears no responsibility for any issues, damages, or malfunctions resulting from
the use of custom or modified firmware components. Such modifications may invalidate product
certifications and guarantees.

• An Advantech router is a complex system comprising hardware, firmware (software), and certifica-
tions. Altering any of these layers results in a product that is fundamentally different from the one
originally manufactured and certified by Advantech.

• Firmware components built solely from the provided open-source components might interact differ-
ently if they depend on Advantech’s proprietary software which is not part of the open-source release.
This means certain features may be affected, or full hardware support related to that component might
be compromised.

• Running custom or modified firmware components voids the device warranty if such modifi-
cations are found to be the cause of a malfunction.

◦ If modifications lead to non-compliance, all certifications listed on the device label and in the
Declaration of Conformity could be considered invalid for that modified state. Telecommunication
certification labels (e.g., PTCRB, GCF, RCM, FCC/IC) are tied to the specific certified firmware
and hardware configuration.

◦ Improper hardware handling resulting from firmware component modifications (e.g., incorrect
power sequencing for peripherals due to a modified driver or utility) can shorten the device’s
lifespan or cause permanent hardware damage.

◦ If you intend to distribute devices running your custom firmware components, and these signifi-
cantly alter the product’s certified behavior, the Advantech labels may no longer fully represent
the product. Please contact Advantech business representatives to discuss options if extensive
modifications are planned for commercial redistribution.

• Custom firmware components are not supported by Advantech Czech s.r.o. If a device becomes un-
bootable or unusable due to such modifications (e.g., corrupted critical library, damaged MRAM data
due to a faulty custom utility), Advantech support will not cover repairs under warranty. Attempting
repairs will incur service fees.

• Uploading custom firmware images (if a full image build was attempted and is possible to flash) to
devices running standard ICR-OS (v3 generation and later) will trigger a warning about the missing
digital signature. Proceeding past this warning is done at your own risk and confirms acceptance
of the warranty voidance implications. (Note: Digital signature verification for full firmware images
applies primarily to v3 and later generation devices.)

Exercise extreme caution when replacing system components: replacing critical system components,
particularly the Linux kernel or essential libraries like libc, can potentially render the device unbootable
("bricked"), often without a straightforward recovery method. Modifying firmware components is done en-
tirely at your own risk.

Extending Router Functionality 118

19.4 Post-Installation Troubleshooting

19.4 Post-Installation Troubleshooting

If issues arise after installing a custom component:

• Revert Changes: If possible, restore the original backed-up component.

• Check Logs: Examine system logs (Status → System Log in the web interface, or via dmesg/logread
on the console) for error messages related to the modified component.

• Serial Console: Access via a serial console can provide boot messages and diagnostic information
even if the network or SSH is unavailable.

• Safe Mode/Recovery: Familiarize yourself with any safe mode or firmware recovery procedures
applicable to your router model (if available) *before* making critical changes.

Extending Router Functionality 119

Part VII.

Special Router Configuration Options

Extending Router Functionality 120

20. Overview of Special Configuration Op-
tions

20.1 Special Options List

This chapter describes advanced configuration parameters that cannot be configured via the web GUI.
These options must be set either via SSH or by editing a startup script, which can be configured through
the GUI.

Item Description
PPP_TOLERATE_NO_SIM When set to 1, module restarts are disabled if connectivity is en-

abled but SIM 1 is missing. After inserting SIM 1, the router must
be rebooted manually.

PPP_TOLERATE_NO_SIM2 Same as above, but for SIM 2 (if available).

PPP_TOLERATE_NO_SIGNAL When set to 1, module restarts are disabled when the signal is
lost. Note that SIM switching will not function in this mode.

PPP_TOLERATE_NO_SIGNAL2 Same as above, but for SIM 2 (if available).

Table 12.: Summary of Special Router Configuration Options

20.2 How to Apply Special Options

To apply these special configuration options, you must directly edit the appropriate configuration file
stored on the router. These files are located in the /etc directory and are named using the pattern
settings.* . You need to locate the file that contains the desired parameter, which can usually be

inferred from the parameter name. For example, a configuration parameter beginning with PPP_ will be
found in the settings.ppp file. See an example script on the next page.

Extending Router Functionality 121

20.3 Configuration by a Script

20.3 Configuration by a Script

The following example shows how to set a special option using a shell script. The script below sets
PPP_REGISTRATION_TOUT to 5 minutes:

#!/bin/sh

Parameters
CONFIG_FILE="/etc/settings.ppp"
PARAM_NAME="PPP_REGISTRATION_TOUT"
PARAM_VALUE="300"

Check if the file exists
if [! -f "$CONFIG_FILE"]; then

echo "File $CONFIG_FILE does not exist!"
exit 1

fi

Check if the parameter exists in the file
if grep -q "^${PARAM_NAME}=" "$CONFIG_FILE"; then

Parameter exists, update its value
sed -i "s/^${PARAM_NAME}=.*/${PARAM_NAME}=${PARAM_VALUE}/" "$CONFIG_FILE"
echo "Updated $PARAM_NAME to $PARAM_VALUE"

else
Parameter doesn't exist, add it to the end of the file
echo "${PARAM_NAME}=${PARAM_VALUE}" >> "$CONFIG_FILE"
echo "Added $PARAM_NAME=$PARAM_VALUE to the file"

fi

Verify the change
if grep -q "^${PARAM_NAME}=${PARAM_VALUE}$" "$CONFIG_FILE"; then

echo "Verification successful: $PARAM_NAME is now set to $PARAM_VALUE"
else

echo "Verification failed: $PARAM_NAME was not properly set to $PARAM_VALUE"
exit 1

fi

Extending Router Functionality 122

Part VIII.

Related Documents

Extending Router Functionality 123

Related Documents

You can obtain product-related documents on the Engineering Portal at icr.advantech.com.

To access your router’s documents or firmware, go to the Router Models page, locate the required model,
and select the appropriate tab below.

Documents that are common to all models and describe specific functionality areas are available on the
Application Notes page.

The Router Apps installation packages and manuals are available on the Router Apps page.

If you are interested in further options for extending router functionality, either through scripts or custom
Router Apps, please see the information available on the Development page.

Extending Router Functionality 124

https://icr.advantech.com/
https://icr.advantech.com/support/router-models
https://icr.advantech.com/download/application-notes
https://icr.advantech.com/products/software/user-modules
https://icr.advantech.com/development

	Document Content and Structure
	Shell Scripting
	Scripting Fundamentals
	What Is a Script
	Supported Environments
	Writing and Executing a Script
	Redirecting Output and Error Streams
	Basic Script Example
	Scripts in Router GUI
	Scheduling Scripts with cron

	Specific Implementation Notes and Examples
	Handling Incoming SMS with a Custom Script
	Email Configuration Notes
	Forward Incoming SMS to Email
	Send Email on PPP Connection Established
	Configure Mobile WAN via SMS
	Send SNMP Trap on PPP Connection Established
	Switch Between Ethernet WAN and Mobile WAN
	Executing AT Commands on Cellular Module
	Schedule an Automatic Daily Reboot
	Voltage Drop SMS Alert

	Python
	Python on Advantech Routers
	Introduction to Python Support
	Choosing Your Python Router App
	Python 3 Router App (Full Version)
	Python 3 Lite Router App
	Comparison Summary

	Installing Python Router Apps
	Prerequisites
	Installation Procedure
	Verifying the Installation

	Accessing and Running Python
	Interactive Python Shell (REPL)
	Executing Python Scripts
	Passing Command-Line Arguments
	Introduction to Python Scripting

	Advanced Features
	Using pip to Install Third-Party Libraries
	Using venv for Isolated Virtual Environments

	Router-Specific Python Development Notes

	Practical Python Script Examples
	Gathering System Information
	Basic Network Reachability Test
	Simple Log File Monitoring

	Router Apps
	Getting Started with Router Apps
	What are Router Apps
	Overview of Development Approaches
	General Development Workflow and Tools

	Router App Structure
	Directory Structures for Applications
	Application Packaging
	Application Lifecycles

	Building Router Apps
	Overview of Development Tools
	Cross-Compiler Toolchains
	SDK (Software Development Kit)
	Building Your First Compiled Application with the SDK
	Core Programming for Compiled Applications
	Developing Scripted Router Applications (Python)

	Summary and Best Practices
	Key Development Constraints Recap
	Best Practices Recap
	Firewall Rules for Router Apps

	Controlling Router Peripherals
	Digital Input/Output Interfaces
	io Utility
	Activate Binary Output via SMS
	Send Email on Binary Input Activation
	Send SNMP Trap on Binary Input State Change

	Serial Interfaces
	Identifying Serial Interfaces
	Command-Line Utilities for Serial Ports
	Scripting Serial Communication with the um Python Module

	USB Interface
	Storage Access – USB Flash and SD Card
	Mounting a USB Flash Drive Partition
	Automount USB Flash Disk
	Supported USB Serial Converter Chips
	Using an Unsupported Serial Converter Chip

	User LED
	led Utility
	Check IPsec Connection Status via LED
	Indicate OpenVPN Status via LED

	Constraints
	S1 Router Programming Considerations
	Extending the Read-Only Root Filesystem
	Adding JavaScript and CSS to the S1 Web Administration Interface
	Changing System Configuration Programmatically on S1 Routers

	Hardware Constraints
	Non-volatile Memory
	RAM Utilization
	CPU Performance Considerations

	Custom Firmware Compilation
	Getting Started with Custom Firmware Compilation
	Overview of Custom Firmware for Advantech Routers
	Prerequisites and Essential Knowledge
	Obtaining Firmware Source Code and Build System Components

	Preparing the Build Environment
	Setting Up the Development Host System
	Setting Up the Cross-Compilation Toolchain
	Configuring the Build System
	Understanding the Build Directory Structure

	Building the Custom Firmware Image Components
	The Firmware Build Process: Step-by-Step
	Building and Integrating Open-Source Components
	Customizing the Linux Kernel (If Applicable)
	Generating and Locating Firmware Image Files
	Troubleshooting Common Build Issues

	Installing and Managing Custom Firmware Components
	Methods for Installing Built Firmware Components
	Initial Boot-up and System Verification
	Important Note on Running Custom Firmware Components
	Post-Installation Troubleshooting

	Special Router Configuration Options
	Overview of Special Configuration Options
	Special Options List
	How to Apply Special Options
	Configuration by a Script

	Related Documents

