L
9
Ly
-
y 4
Z
Q
<

,__.......sss
oo Ny} (e

N (VAR R [

//Es - _______= ____
A ”_______ wnl) U
| T \\Eﬁ\
o o
ﬁ%i§§§
====_ ==_ [l g
’——————— =—=== ———-——__ %— [T]]]]}

ﬁzﬁﬁ%
el Ll Ll 2

e Bl oy el

e e

(=}

Newms (] foy (ol

MQTT Broker

&3 RouterApp

Advantech Czech s.r.0., Sokolska 71, 562 04 Usti nad Orlici, Czech Republic

Document No. APP-0125-EN, revised on May 13, 2025.

© 2025 Advantech Czech s.r.o. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photography, recording, or any information storage and retrieval system without written consent.
Information in this manual is subject to change without notice, and it does not represent a commitment on the part of Advantech.

Advantech Czech s.r.0. shall not be liable for incidental or consequential damages resulting from the furnishing, performance,
or use of this manual.

All brand names used in this manual are the registered trademarks of their respective owners. The use of trademarks or other

designations in this publication is for reference purposes only and does not constitute an endorsement by the trademark holder.

Used symbols

A Danger — Information regarding user safety or potential damage to the router.

! Attention — Problems that can arise in specific situations.

O Information — Useful tips or information of special interest.

Contents

1.

MQTT Introduction

1.1 Whatis MQTT and MQTT Broker e e e e e e e e e
1.2 What does MQTT Broker do? e e
1.3 Whatdoes MQTT Bridge do? e

. Router App Description

2.1 Router App Introduction
2.2 Weblnterface o e
2.3 Broker Configuration e
2.3.1 Broker Configuration Example
2.4 Bridge Configuration e
2.4.1 Bridge Configuration Example o
2.5 Security e
251 Encryption e
2.5.2 Authentication
2.6 CommandLineTools.
2.6.1 mosquitto_pubCommand
2.6.2 mosquitto_subCommand

3. Related Documents

List of Figures

Router App Main Menu e
Broker Configuration e
Broker Configuration Example
Bridge Configuration
Bridge Configuration Example e
Broker Configuration for the mosquitto_pub Command Example

Broker Configuration for the mosquitto_sub Command Example

N OOk, O =

List of Tables

1 Broker Configuration Items Description
2 Bridge Configuration Items Description

1. MQTT Introduction

1.1 What is MQTT and MQTT Broker

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol designed for efficient
communication between devices in loT (Internet of Things) and mobile environments. It enables devices
to publish messages to topics and subscribe to receive messages on those topics, facilitating real-time,
reliable, and scalable data exchange with minimal bandwidth and power consumption requirements.

1.2 What does MQTT Broker do?

MQTT Broker is a server or middleware that acts as a central hub for facilitating communication between
devices and applications in an MQTT-based Internet of Things (loT) architecture.

1. Message Routing: It routes messages between publishers (devices or applications that send data)
and subscribers (devices or applications that receive data). When a device publishes a message to
a specific topic, the MQTT Broker ensures that the message is delivered to all subscribers interested
in that topic.

2. Protocol Translation: It handles the MQTT protocol, allowing devices and applications using MQTT
to communicate with each other regardless of the underlying network protocols they use. This enables
interoperability among various loT devices and applications.

3. QoS (Quality of Service) Management: MQTT supports different levels of QoS for message deliv-
ery—QoS 0 (At most once), QoS 1 (At least once), and QoS 2 (Exactly once). The MQTT Broker
manages the delivery of messages based on the QoS level specified by publishers and subscribers,
ensuring reliable and efficient message delivery according to the desired level of reliability.

4. Session Management: It manages client sessions, ensuring that clients remain connected and han-
dling client reconnects seamlessly. This is essential for maintaining continuous communication be-
tween devices and applications, especially in unreliable network conditions.

5. Security: MQTT Brokers often provide security features such as authentication, access control, and
encryption to protect the data exchanged between devices and applications. This ensures that only
authorized clients can publish or subscribe to specific topics and that data remains confidential and
secure during transmission.

Overall, an MQTT Broker plays a crucial role in enabling scalable, efficient, and secure communication
in loT ecosystems by facilitating the exchange of data between connected devices and applications.

1.3 What does MQTT Bridge do?

An MQTT bridge allows two MQTT brokers to be connected together. Messages published on specified
topics on one broker can be forwarded to the other broker, and vice versa. This is useful for linking separate
MQTT networks, aggregating data from multiple sites, or creating hierarchical MQTT architectures. The
direction (in, out, or both) and the topic patterns for message forwarding are configurable for each bridge
connection.

MQTT Broker 1

2. Router App Description

2.1 Router App Introduction

Router app MQTT Broker is not included in the standard router firmware. Uploading of this router app
is described in the Configuration manual.

The MQTT Broker Router App extends the functionality of Advantech routers by providing an integrated
MQTT broker service based on the popular open-source Eclipse Mosquitto™ project. This allows the router
itself to act as a central communication hub for MQTT-enabled devices on the local network, facilitating loT
messaging without requiring an external broker server. Key features include support for standard MQTT
operations, TLS encryption (PSK and certificate-based), client authentication (username/password and
certificate CN), and MQTT bridging to connect with other brokers.

2.2 Web Interface

After installing the Router App, the GUI can be accessed by clicking the Router App name on the Router
Apps page of your router’s web interface.

The left panel of the GUI contains a menu with the following sections: Information — Status, Configura-
tion — Broker, Configuration — Bridge 1-3, and Administration — Return, see Figure 1.

Information

State

Configuration

Broker

Bridge 1
Bridge 2
Bridge 3

Administration

Return

Figure 1: Router App Main Menu

Key functionality:
» The Information — State page displays current MQTT service state.

 Configuration — Broker and Configuration — Bridge 1-3 pages contain settings described in subse-
quent sections.

» Administration — Return exits the Router App interface and returns to the main Router Apps page.

MQTT Broker 2

https://mosquitto.org/

2.3 Broker Configuration

2.3 Broker Configuration

By clicking the Broker menu item, you can configure the broker, configuration options are displayed on
Figure 2 and all items are described in Table 1.

MQTT Broker Configuration

[| Enable MQTT Broker

PSK Identity

Pre-shared Key

Port 1883 |
Log Level | error v |
TLS Support | none v |

Broker Certificate

A
Load From File...

Broker Private Key P
Load From File...

Client CA Certificate(s) * p

Load From File...

Restrict For

Usermame

Auth Password

| anonymous v

 Apply |

Figure 2: Broker Configuration

ltem Description

Enable MQTT Broker

Enables the MQTT Broker functionality on the router.

Port

Enter the TCP port number where the MQTT Broker will listen for incoming
client connections (default is typically 1883 for unencrypted MQTT and 8883
for encrypted MQTT/TLS).

Log Level

Select the level of detail for log information generated by the broker (e.g.,
None, Error, Warning, Information, Debug).

TLS Support

Options for Transport Layer Security (TLS) encryption are:
» none — No TLS encryption is used. Communication is unencrypted.

» PSK based — TLS encryption using a Pre-Shared Key. Requires PSK
Identity and Pre-shared Key fields below.

« certificate based — TLS encryption using X.509 certificates. Requires
Broker Certificate and Broker Private Key fields below. See Chap-
ter 2.5.1 for more details.

Continued on the next page

MQTT Broker

2.3 Broker Configuration

Continued from previous page

Iltem Description

PSK Identity When PSK based TLS Support is selected, enter the identity string associ-
ated with the pre-shared key. This identity is sent by the client to identify
which key to use.

Pre-shared Key When PSK based TLS Support is selected, enter the Pre-shared Key as
a hexadecimal string. This key must be securely shared with clients.
Broker Certificate When certificate based TLS Support is selected, paste the Broker’s public

certificate here in PEM format. This certificate is presented to clients to verify
the broker’s identity.

Broker Private Key When certificate based TLS Support is selected, paste the Broker’s corre-
sponding private key here in PEM format. This key must be kept secret.

Client CA Certificate(s) | When certificate based TLS Support is selected, optionally paste the Certifi-
cate Authority (CA) certificate(s) here in PEM format. If they are specified,
the client is forced to provide its certificate and they are used to verify its
certificate.

Resctrict For Options for client authentication are:

+ anonymous — No authentization, no access control. Anybody can con-
nect, pusblish, subscribe.

» username/password — Connecting is limited to user entered in User-
name field and he must authenticate with password entered in Auth
Password field.

« certificate CN — Publishing and subscribing is limited to user entered
in Username filed, client provides username as subject CN in it's
certificate. Requires certificate based TLS support with Client CA Cer-
tificate(s) to be configured.

Username Enter the required username to restrict operation to. This field is used for both
username/password and certificate CN options.
Auth Password When the username/password option is selected, enter the required authen-

tication password here.

Table 1: Broker Configuration ltems Description

MQTT Broker 4

2.3 Broker Configuration

2.3.1 Broker Configuration Example

This example shows how to configure the local MQTT Broker to run on the standard unencrypted port
(1883) and require simple username/password authentication for connecting clients.

Scenario:
+ Enable the broker service by ticking Enable MQTT Broker.
* Listen on TCP port 1883.
* No TLS encryption required.

* Require clients to authenticate with username "advantech" and password "password123".

GUI Configuration:

Enable MQTT Broker

Port 1883 |
Log Level | error v |
TLS Support | none v |
PSK Identity

Pre-shared Key

Broker Certificate y

Load From File...

Broker Private Key y

Load From File...

Client CA Certificate(s) * /2?

Load From File...

Restrict For | username/password v |
Usermame | advantech |
Auth Password |P355W"’d123 ®
| Apply |

Figure 3: Broker Configuration Example

After applying these settings, MQTT clients can connect to the router’s IP address on port 1883, but they
must provide the username "advantech" and password "password123" during the connection handshake
to be successfully authenticated.

MQTT Broker 5

2.4 Bridge Configuration

2.4 Bridge Configuration

You can configure up to three MQTT bridges (Bridge 1-3). An MQTT bridge connects this local broker to
a remote MQTT broker, allowing messages to be shared between them based on specified topic patterns.
The configuration page for such a bridge is shown in the Figure 4 and described in Table 2.

Other brokers can connect as a bridge to this broker regardless this configuration. Other brokers must
use the connection options defined on the Broker page. When Enable MQTT Broker on Broker page is
unchecked, only one useful configuraton is to define two (or three) bridges. Then this router will resend
messages between these bridged routers, but will have no its own clients.

MQTT Bridge 1 Configuration

[| Enable MQTT Bridge 1

Unigue Name |hridge1 |

Host Port
Primary Remote | || 1883 |

Secondary Remote * | || |

MQTT Version 5.0 v |
Keepalive interval |E~l] | 5
Clean Session

Try Private

TLS Support | none ™

PSK Identity

Pre-shared Key

Remote CA Certificate(s) i
Load From File...

Verify Hostname

Local Certificate * v
Load From File...

Local Private Key * y

Load From File...

Authentication | none V:
Username
Password

Topic Direction (E Local Prefix * Remote Prefix *
1 O in__ v](ov]| | |
2 [[CEa]rxa] I |
10] I[in v][ov]| | |

* Can be blank
| Apply |

Figure 4: Bridge Configuration

MQTT Broker 6

2.4 Bridge Configuration

Iltem Description

Enable MQTT Bridge x | Enables MQTT Bridge number x functionality.

Unique Name A user-defined name to identify this bridge. It is used as connection name
and also as client ID to identify this local broker to a remote broker.

Primary Remote Host The hostname or IP address of the remote MQTT broker to connect to.
Primary Remote Port The TCP port number of the remote MQTT broker (e.g., 1883 or 8883).
Secondary Remote Optional second remote MQTT broker to connect to, using the same creden-

tials as the primary remote host. It will be used as backup when the primary
broker is no avaiable.

MQTT Version Choose the MQTT protocol version to use for the connection to the remote
broker (3.1.1 or 5.0).
Keepalive Interval The maximum time interval (in seconds) between messages sent between

the local and remote broker. If no other messages are flowing, PING message
is sent. When no response, the remote broker is considered disconnected.
Defaults typically to 60.

Clean Session When checked, all messages and subscription will be cleaned up on the re-

mote broker on bridge disconnection. When unchecked, the subscriptions

and messages are kept on the remote broker, and delivered on the bridge
reconnection.

Try Private When checked, the local broker try to indicate to remote broker the connection

is a bridge not an ordinary client. Bridging then operate more effective. But

not all brokers support this feature and then it can cause issues in connection.

TLS Support Options for TLS encryption for the connection to the remote broker:

* none — No TLS encryption is used for the bridge connection.

» PSK based — Use TLS encryption with a Pre-Shared Key for the bridge
connection. Requires PSK Identity and Key.

« certificate based — Use TLS encryption with X.509 certificates for the
bridge connection. Requires Remote CA Certificate(s). When the re-
mote broker tries to verify clients via CA, the optional fields Local Cer-
tificate and Local Private Key must be filled.

PSK Identity A string to identify the pre-shared key to the remote broker (used if TLS Sup-
port is PSK based).

Pre-shared Key When PSK based TLS support is selected, enter the pre-shared Key as a hex-
adecimal string.

Remote CA CA certificate(s) (PEM format) used to verify the remote broker’s certificate

Certificate(s) (used if TLS is certificate based).

Verify Hostname Enables/disables checking if hostname of the remote broker and hostname
in the it’s certifikace match.

Local Certificate The client certificate (PEM format) for this broker to present to the remote bro-

ker (optional, used only if TLS is certificate based and remote broker verifies
client certificate).

Local Private Key The private key (PEM format) corresponding to the Client Certificate (optional,
used only if TLS is certificate based and remote broker verifies client certifi-
cate).

Continued on the next page

MQTT Broker 7

2.4 Bridge Configuration

Item
Authentication

Continued from previous page
Description
Options for authenticating this local broker to the remote broker:
* none — No authentication is sent to the remote broker.

» username/password — Authenticate to the remote broker using a user-
name and password.

Remote Prefix

Username Username for authenticating to the remote broker (used if Authentication is
username/password).

Password Password for authenticating to the remote broker (used if Authentication is
username/password).

Topic Filter and rewrite the shared messages. The messages incomming from local

Local Prefix broker must have Local Prefix/Topic topic to be shared. The messages

incomming from remote broker must have Remote Prefix/Topic topic to
be shared. When the message is forwarded the Local Prefix is replaced
by Remote Topic and vice versa. Be careful to avoid loops when defining
multiple rules. You must provide a Topic and optionally Local Prefix and/or
Remote Prefix. Prefixes must end with a slash in this case and the Topic is
concatenated with the prefixes. Or you can leave the Topic empty and fill both
Local Prefix and Remote Prefix. Prefixes must not end with the slashin this
case and they are used as full topic.

Direction

Filter the shared messages by direction:

* in — Receive messages matching the topic pattern from the remote bro-
ker and publish them locally.

» out — Send messages matching the topic pattern from the local broker
to the remote broker.

» both — Both send messages to and receive messages from the remote
broker based on the topic pattern.

QoS

Specify the Quality of Service level for the shared messages (0: At most once,
1: At least once, 2: Exactly once). It determines the reliability of message

delivery across the bridge.

Table 2: Bridge Configuration ltems Description

MQTT Broker

2.4 Bridge Configuration

2.4.1 Bridge Configuration Example

This example demonstrates how to configure an MQTT bridge to forward messages published locally on
topics starting with local/sensor/ to a public remote broker (test.mosquitto.org) under a different

topic structure (remote/officel/sensor/).
Scenario:
« Enable bridge 1 by ticking Enable MQTT Bridge 1.
» Connect to the public broker test.mosquitto.org on port 1883.
* Use MQTT version 3.1.1 without TLS or authentication.
» Forward messages out from the local broker to the remote broker.

* Local messages published to local/sensor/<specific_sensor> should be published on the re-
mote broker as remote/officel/sensor/<specific_sensor>

» Use Quality of Service (QoS) level 1 for forwarded messages.

» Enable and configure broker to allow sensors to publish messages to it.

GUI Configuration:

MQTT Bridge 1 Configuration

Enable MQTT Bridge 1

Unigue Name |ToPuincMosquiI:to |
Host Port
Primary Remote |test.mosquitto.urg || 1883 |

Secondary Remote * | || |

MQTT Version (3.1 v
Keepalive interval |6l] |s
Clean Session

Try Private

TLS Support | none W

PSK Identity

Pre-shared Key

Remote CA Certificate(s) A
Load From File...

Verify Hostname

Local Certificate * 4
Load From File...

Local Private Key = 4

Load From File...

Authentication | none v
Usemame
Password

Topic Direction (E Local Prefix = Remote Prefix *
1 | sensor/# || out v | |1_V| | local/ || remote/officel/ |
2 [in__ v](ov]| | |
10 [Iin v]lov]| | |

= Can be blank
| Apply |

Figure 5: Bridge Configuration Example

MQTT Broker 9

2.4 Bridge Configuration

Once applied, any message published locally to a topic like local/sensor/temperature Wwill be auto-

matically forwarded by the bridge and published to the topic remote/officel/sensor/temperature onN
the test.mosquitto.org broker.

How it works:
1. A message with local/sensor/temperature topic and a QoS x arrives to the broker.

2. The message is published locally with local/sensor/temperature topic and QoS x to all relevant
subscribers.

3. The bridging checks its rules with Direction setto out . It finds the rule configured above.

4. It checks if the topic local/sensor/temperature starts with the Local Prefix (local/). It does.
5. It removes the Local Prefix, leaving sensor/temperature

6. It checks if the remaining part (sensor/temperature) matches the Topic pattern (sensor/#). It
does.

7. lttakes the matched part (sensor/temperature)and prependsthe Remote Prefix (remote/officel/),
resulting in the topic remote/officel/sensor/temperature

8. It publishes the message to the remote broker with the remote/officel/sensor/temperature
topic and QoS level 1

MQTT Broker 10

2.5 Security

2.5 Security

The MQTT protocol itself does not mandate encryption, but security is typically added using TLS at the
transport layer. This section details how to configure encryption and authentication for the MQTT Broker
Router App.

2.5.1 Encryption

Encryption of transmission is not performed at the MQTT protocol level itself, but rather at the TCP/IP
level using TLS (Transport Layer Security). Without encryption enabled, all transmitted data, including
passwords, is visible in plain text to network listeners! For encryption, you have two primary options
provided by this Router App: PSK based and Certificate based.

PSK based encryption uses a Pre-Shared Key. This involves symmetric encryption where both the broker
and the client must possess the same secret key. This key must be exchanged securely beforehand (out-of-
band). A hexadecimal string is typically used as the key. You can generate one using a tool like OpenSSL:
openssl rand -hex 32

This command generates a 32-byte (256-bit) key. You must enter this key into the Pre-shared Key field
in the Router App settings and also configure it on the MQTT client(s)'. Additionally, you must provide
a PSK Identity string in both the Router App settings and the client configuration. This identity tells the
broker which key to use for a connecting client, allowing for different keys potentially being used by different
clients (although the Router App GUI currently supports configuring only one PSK |dentity/Key pair for all
PSK clients).

Certificate based encryption uses asymmetric cryptography with X.509 certificates. This is the more com-
mon and scalable method for securing MQTT. You can use commercial certificates (from trusted Certificate
Authorities, potentially including free options like Let's Encrypt) or generate your own self-signed certifi-
cates for private deployments. If you choose self-signed certificates, OpenSSL is a common tool. Here is
an example procedure to create a simple CA and a broker certificate:

1. Generate a private key for your Certificate Authority (CA):
openssl genpkey -algorithm RSA -out ca.key

2. Create the self-signed root CA certificate using the CA key:
openssl req -new -x509 -days 1826 -key ca.key -out ca.crt

* You will be prompted for CA details like Country, Organization Name, etc.

3. Generate a private key for the MQTT Broker:
openssl genpkey -algorithm RSA -out broker.key

4. Create a certificate signing request (CSR) for the Broker. Crucially, set the Common Name (CN) to
the hostname or IP address clients will use to connect to the broker:
openssl req -new -out broker.csr -key broker.key -subj "/CN=router.local"

* Replace router.local with the actual hostname or IP address of your router. Use Subject
Alternative Names (SANs) if multiple addresses are used.

5. Sign the broker’s CSR using your CA key and certificate to create the broker’s certificate:
openssl x509 -req -in broker.csr -CA ca.crt -CAkey ca.key -CAcreateserial

-out broker.crt -days 360

Client configuration details depend on the specific MQTT client software used and are not covered in this guide; consult your
MQTT client documentation.

MQTT Broker 11

2.5 Security

6. Copy the contents of the generated files ca.crt (your CA certificate), broker.crt (the broker’s
certificate), and broker.key (the broker’s private key) into the corresponding fields (CA Certifi-
cate(s), Broker Certificate, and Broker Private Key) in the Router App’s Broker Configuration section.
The file contents should be pasted in PEM format (text starting with ‘—BEGIN...").

7. Distribute the CA certificate file (ca.crt) to all clients so they can verify the broker’s certificate.

» Various cryptographic algorithms and parameters can be used during certificate generation.
Ensure compatibility with your clients. Importantly, the broker’s private key (broker.key)
must not be password protected, otherwise the broker service cannot load it.

« The Common Name (CN) or Subject Alternative Name (SAN) in the broker’s certificate
(broker.crt) must match the address clients use to connect. If there’s a mismatch, most
MQTT clients will refuse the connection due to failed hostname verification, unless explicitly con-
figured to ignore such errors (e.g., using an --insecure flag in tools like mosquitto_pub

or mosquitto_sub , which is generally discouraged for production).

MQTT Broker 12

2.5 Security

2.5.2 Authentication

Authentication verifies the identity of clients connecting to the broker. This Router App supports authen-
tication via username/password or client certificates.

For the username/password option, enter the desired username and password into the Username and
Password fields in the Router App’s Broker Configuration. Clients must then provide these exact credentials
when connecting. Note that while the underlying Mosquitto broker can support multiple username/password
pairs (via configuration files), this Router App GUI currently allows configuring only one pair, which all clients
using this method must use.

The certificate CN option provides authentication based on the client's X.509 certificate. This method
requires certificate based TLS encryption to be enabled first. The client must present a valid certificate
signed by a Certificate Authority listed in the broker's CA Certificate(s) field. The broker then extracts the
Common Name (CN) from the subject field of the client’s certificate and compares it to the value entered in
the Username field in the Router App’s Broker Configuration. If they match, authentication succeeds.

Here is an example procedure using OpenSSL to create a client certificate signed by the CA created
previously:

1. Generate the client’s private key:
openssl genpkey -algorithm RSA -out client.key

2. Generate a certificate signing request (CSR) for the client. The Common Name (CN) here will be
used for authentication:
openssl req -new -out client.csr -key client.key -subj "/CN=client_device_001"

* Replace client_device_001 with the desired unique name for the client.

3. Sign the client’s CSR using your CA certificate and key:
openssl x509 -req -in client.csr -CA ca.crt -CAkey ca.key -CAcreateserial

-out client.crt -days 360

4. Enter the exact Common Name used in step 2 (e.g., client_device_001) into the Username field
in the Router App’s Broker Configuration and select certificate CN as the Authentication method.

5. Securely distribute the client’s certificate (client.crt), the client’'s private key (client.key),

and the CA certificate (ca.crt) to the client device. The client software must be configured to use
these files for TLS connection and authentication.

MQTT Broker 13

2.6 Command Line Tools

2.6 Command Line Tools

The MQTT Broker Router App utilizes the open-source Eclipse Mosquitto™ project. After installing the
Router App, two useful command-line utilities, mosquitto_pub and mosquitto_sub , become available
via the router's command-line interface (e.g., via SSH). These can be invaluable for testing, debugging,

and scripting MQTT interactions directly on the router.

2.6.1 mosquitto_pub Command

The mosquitto_pub command is used to publish a single message to a specific topic on an MQTT

broker.

Command Example

Scenario:

» Publishing the message payload "54" to the topic "SENSOR/ROOM8/TEMPERATURE".

» The target broker is running on the same router at IPv6 address £c00:202::254 , using port 1883.

» The connection uses PSK-based TLS encryption with the identity "test" and the hexadecimal key.

+ Authentication is performed using the username "house" and password "12345".

Command syntax:
mosquitto_pub --host £c00:202::254 --port 1883 --psk

b7e87d9b2074d5889a7969985d9f c3£04e4e5b8cb57956a812b2c52b6411abd8 —--psk-identity test

-u house -P 12345 -t SENSOR/ROOM8/TEMPERATURE -m 54

Configuration of the broker on the router:

Enable MQTT Broker

Load From File...

Port 1883

Log Level error W

TLS Support PSK based W

PSK Identity test

Pre-shared Key b7e87d9b2074d5889a79699

Broker Certificate y
Load From File...

Broker Private Key y
Load From File...

Client CA Certificate(s) * y

Restrict For username/password v
Username house
Auth Password 12345 ®
-
Apply

Figure 6: Broker Configuration for the mosquitto_pub Command Example

MQTT Broker

14

https://mosquitto.org/

2.6 Command Line Tools

2.6.2 mosquitto_sub Command

The mosquitto_sub command subscribes to one or more topics (using wildcards if needed) and prints
any messages received on those topics.

Command Example

Scenario:
» Subscribing to all topics starting with factory/sensor/# (note the wildcard #).
» The connection is made to a broker identified by the hostname "router" on the default port 1883.
» The connection uses certificate-based TLS encryption; the client verifies the broker’s certificate using
ca.crt (--cafile).
The client authenticates itself to the broker using its own certificate client.crt (--cert) and
corresponding private key client.key (--key).
* The command is set to exit after receiving exactly one message (-C 1).

Command Syntax:
mosquitto_sub -C 1 --host router --port 1883 --cafile ca.crt --cert client.crt --key

client.key -t factory/sensor/#

Configuration of the broker on the router:

MQTT Broker Configuration

Enable MQTT Broker

Port 1883 |
Log Level | error v |
TLS Support | certificate based v |
PSK Identity

Pre-shared Key

----- BEGIN CERTIFICATE-----
) MITDYTCCAmgAwIBAg TUDIDDLXv3S1tvLhDY{ip/RuSg5uwDQYIKoZ Thy cNAQEL
Broker Certificate |_____ END CERTIFICATE----- Y

| Load From File... |

----- BEGIN CERTIFICATE-----
) MIID&zCCAeBCFD1D NeP@t i imNeVdFNALpPRNYkUHFMABGCSqGS Th3DQEBCHUAMEAX
Broker Private Key |_____ END CERTIFICATE----- Y

| Load From File... |

----- BEGIN PRIVATE KEY-----
. . - MIIEwQIBADANBgZkqhKIoweBAQEFAASCBKCWEES JAZEAADIBAQDITCHSZASQSV2A
Client CA CEI'tIﬁCEtE(S] _____ END PRIVATE KEY----- /é

| Load From File... |

Restrict For | certificate CN v |

Username |huu5e |

Auth Password

[Apply |

Figure 7: Broker Configuration for the mosquitto_sub Command Example

These tools provide powerful ways to interact directly with the MQTT broker running on the router. Consult
the Mosquitto documentation (e.g., via man mosquitto_pub Or man mosquitto_sub on the router CLI)

or use the --help flag for more detailed usage information.

MQTT Broker 15

3. Related Documents

[1]1 MQTT Specifications Version 5.0: https://docs.oasis-open.org/maqtt/mqtt/v5.0/mqtt-v5.0.html

[2] MQTT Specifications Version 3.1.1: https://docs.oasis-open.org/mqgtt/mqtt/v3.1.1/mqtt-v3.1.1.html
[3] MQTT Broker Mosquitto: https://mosquitto.org/

You can obtain product-related documents on Engineering Portal at icr.advantech.com address.

To get your router's Quick Start Guide, User Manual, Configuration Manual, or Firmware go to the Router
Models page, find the required model, and switch to the Manuals or Firmware tab, respectively.

The Router Apps installation packages and manuals are available on the Router Apps page.

For the Development Documents, go to the Development page.

MQTT Broker 16

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://mosquitto.org/
https://icr.advantech.com/
https://icr.advantech.com/support/router-models
https://icr.advantech.com/support/router-models
https://icr.advantech.com/products/software/user-modules
https://icr.advantech.com/development

	MQTT Introduction
	What is MQTT and MQTT Broker
	What does MQTT Broker do?
	What does MQTT Bridge do?

	Router App Description
	Router App Introduction
	Web Interface
	Broker Configuration
	Broker Configuration Example

	Bridge Configuration
	Bridge Configuration Example

	Security
	Encryption
	Authentication

	Command Line Tools
	mosquitto_pub Command
	mosquitto_sub Command

	Related Documents

