
Bluetooth

Advantech Czech s.r.o., Sokolska 71, 562 04 Usti nad Orlici, Czech Republic
Document No. APP-0098-EN, revision from 30th January, 2024.

© 2024 Advantech Czech s.r.o. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photography, recording, or any information storage and retrieval system without written consent.
Information in this manual is subject to change without notice, and it does not represent a commitment on the part of Advantech.

Advantech Czech s.r.o. shall not be liable for incidental or consequential damages resulting from the furnishing, performance,
or use of this manual.

All brand names used in this manual are the registered trademarks of their respective owners. The use of trademarks or other

designations in this publication is for reference purposes only and does not constitute an endorsement by the trademark holder.

Used symbols

Danger – Information regarding user safety or potential damage to the router.

Attention – Problems that can arise in specific situations.

Information – Useful tips or information of special interest.

Example – Example of function, command or script.

Contents

1. Changelog 1

1.1 Bluetooth Changelog . 1

2. Introduction 2

3. Web Interface 3

3.1 Information . 4
3.1.1 Status . 4
3.1.2 Nearby Devices . 5

3.2 Configuration . 6
3.2.1 Global . 6
3.2.2 Paired devices . 7

3.3 General . 7
3.3.1 Licenses . 7

4. Bluetooth usage 8

4.1 Pairing . 8
4.1.1 Manual from Nearby Devices menu section . 9
4.1.2 Automatic pairing controlled via BIN . 11
4.1.3 Unpairing . 12

4.2 Networking (PAN) . 13
4.3 BLE (sensors) . 14

5. Command line tools 15

6. Examples 16

6.1 Reading from a BLE sensor in the Shell script . 16
6.2 Writing to a BLE device in the Shell script . 19
6.3 Reading a BLE sensor in C . 23

7. Related Documents 31

List of Figures

1 Menu . 3
2 Status . 4
3 Nearby devices . 5
4 Configuration . 6
5 Paired devices . 7
6 licenses . 7
7 Bluetooth Settings and available devices on the phone . 9
8 Available devices on the router . 9
9 Pairing confirmation in the router app . 10
10 Pairing confirmation in the phone . 10

11 Paired devices displayed in the router . 10
12 Paired devices displayed in the phone . 11
13 Paired, Bonded and Trusted device . 12
14 Detail of the paired device in the phone . 12
15 Unpair . 13
16 Internet access . 13
17 Manufacturer data for Example 1 . 16
18 Manufacturer data for example 2 . 17
19 Use of bluetoothctl . 17
20 TokenCube BLE tag . 18
21 Manufacturer data . 19
22 BLE characteristics . 20
23 Jollan relay . 22
24 Sensor data . 23
25 Structure of HCI event . 29
26 Example 3 output . 30
27 Tyre pressure sensor . 30

List of Tables

1 Configuration items description . 6
1 Data structure . 16
2 Data interpretation . 17
3 Relay control commands . 21

1. Changelog

This Router App has been tested on a router with firmware version 6.3.10. After updating the router’s
firmware to a higher version, make sure that a newer version of the Router App has not also been
released, as it is necessary to update it as well for compatibility reasons.

1.1 Bluetooth Changelog

v1.0.0 (2021-01-10)

• First release of bluetooth support.

• With Bluez 5.55.

• With D-Bus 1.12.20.

v1.1.0 (2022-11-03)

• Reworked license information

v1.1.1 (2023-02-28)

• Linked statically with zlib 1.2.13

v1.2.0 (2024-01-10)

• Added support for v4 and v4i

• Updated BlueZ to 5.70

• Updated dependencies (Expat to 2.5.0, D-Bus to 1.15.8)

• Added pairing/unpairing support (via web UI and binary input)

• Added PAN support

Bluetooth Manual 1

2. Introduction

This router app is not installed on Advantech routers by default. Uploading of this router app is de-
scribed in the Configuration manual (see Chapter Related Documents).

The router app is compatible with ICR-32xx and some ICR-44xx routers.

Bluetooth is a wireless technology standard used for exchanging data between fixed and mobile devices
over short distances using UHF radio waves in the industrial, scientific and medical radio bands, from 2.402
GHz to 2.480 GHz. It was originally conceived as a wireless alternative to RS-232 data cables.

There are two main variants of Bluetooth and those are classic Bluetooth and Bluetooth Low Energy.
Even that they exists within same standard, they are considerably different.

Classic Bluetooth is here from the beginning. In some texts you can find Classic Bluetooth called Blue-
tooth BR/EDR. This variant aims to bigger data transmissions - file transfer, audio casting etc. and requires
to handshake connection between devices and it usualy creates long data streams.

Bluetooth Low Energy (BLE), previously known as Wibree, is a subset of Bluetooth v4.0 and newer with
an entirely new protocol stack for sending short packets, what is useful in IoT. Compared to the Bluetooth
standard protocols that were introduced in Bluetooth v1.0 to v3.0 and continues in 4.0 and on, it is aimed
at very low power applications powered by a coin cell for several years. In terms of lengthening the battery
life of Bluetooth devices, BLE represents a significant progression. In the version 4 the reach distance of
BLE was fairly short, but was significantly improved in version 5.

Bluetooth implementation in our routers have three parts:

1. Kernel Bluetooth support + drivers (from 6.2.6 firmware)

2. Bluetooth Router App containing Bluez – Linux Bluetooth stack

3. Applications – now Node-RED Bluetooth node only

The current implementation targets to Bluetooth Low Energy sensors and networking (PAN).

Bluetooth Manual 2

3. Web Interface

Once the installation of the module is complete, the module’s GUI can be invoked by clicking the module
name on the Router apps page of router’s web interface.

Left part of this GUI contains menu with Information menu section with Status and Nearby Devices items
and Configuration menu section. General menu section contains list of Licenses used and Return item,
which switches back from the module’s web page to the router’s web configuration pages. The main menu
of module’s GUI is shown on Figure 1.

Figure 1: Menu

Bluetooth Manual 3

3.1 Information

3.1 Information

3.1.1 Status

Actual settings of Bluetooth adapter is displayed here when Bluetooth is active. Address, data presented
by the device, whether is device discovering and discoverable whether accepts pairing requests and what
services provides.

Figure 2: Status

Bluetooth Manual 4

3.1 Information

3.1.2 Nearby Devices

List of discoverable Bluetooth devices nearby. List is dynamic and the device is discarded when does not
cast more than 30 seconds. But the list itself does not refresh automatically on the screen, manual refresh
is needed. Pairing or unpairing of the nearby bluetooth devices is done in this list. More about Pairing
functionality can be found in the chapter Pairing 4.1. Detailed information about device is displayed after
expanding.

Figure 3: Nearby devices

Bluetooth Manual 5

3.2 Configuration

3.2 Configuration

3.2.1 Global

All Bluetooth router app settings can be configured by clicking on the Global item in the main menu of
module web interface. An overview of configurable items is given below.

Figure 4: Configuration

Item Description

Enable Bluetooth support Enables Bluetooth functionality.

Discoverable Make router discoverable via bluetooth

Alias Alias of the router when displayed in search results
on the foreign devices

Pairable when BIN is low Used for pairing, when access to routers GUI is not
possible

PAN Support Enables networking via Bluetooth

IP Address PAN server IP address

Subnet Mask / Prefix PAN subnet mask / prefix

DNS Resolver DNS resolver IP address

IP Pool Start Start of the IP range dedicated for PAN

IP Pool End End of the IP range dedicated for PAN

Lease Time Amount of time in seconds before release of leased
IP

Table 1: Configuration items description

Bluetooth Manual 6

3.3 General

3.2.2 Paired devices

List of devices paired with router is displayed here with possibility to display more detailed information
regardless the device is currently really accessible. More about Pairing functionality can be found in the
chapter Pairing 4.1.

Figure 5: Paired devices

3.3 General

3.3.1 Licenses

Summarizes Open-Source Software (OSS) licenses used by this module.

Figure 6: licenses

Bluetooth Manual 7

4. Bluetooth usage

Classic Bluetooth uses the concept of profiles. For example, when you enable PAN (Personal Area
Network) support in the configuration, you will see an item on the Status page like:

UUIDs: 00001116-0000-1000-8000-00805f9b34fb NAP

which means that the router has the Network Access Point profile (server for PAN).

To utilize the services of a specific profile, devices must be paired and authorized to use that particular
profile. Profiles can be individually authorized each time they are used, or you can set a device as trusted,
allowing it global access to all profiles without additional authorization.

For BLE (Bluetooth Low Energy), pairing is not generally required, but if used, it provides secure com-
munication.

4.1 Pairing

Pairing is a process during which Bluetooth devices exchange keys for encrypted communication. It is
mandatory for classic Bluetooth and optional for BLE (Bluetooth Low Energy).

One device initiates the pairing, called the initiator, and the other party is the responder. To allow the
responder to accept pairing requests, it must be in Pairable mode. It is usually also in Discoverable mode
so that the initiator’s user can find it; otherwise, the user must discover its address through another means.

During pairing, the user should confirm that they are pairing with the correct device. Various authentica-
tion strategies are available for this purpose. However, authentication is not mandatory because if a device
lacks a display or keyboard, there is no way to perform it. If both parties have different authentication
capabilities, they agree on a mutually acceptable procedure.

Advantech routers provide two pairing methods in their web UI.

Bluetooth Manual 8

4.1 Pairing

4.1.1 Manual from Nearby Devices menu section

The router is the initiator.

By pressing the Pair button on the visible device, you initiate the pairing process. In this case, authen-
tication is supported through a 6-digit code comparison, which is displayed to the user on both the router
and the other device. However, if the other side does not support manual authentication, the pairing will
occur immediately.

Figure 7: Bluetooth Settings and available devices on the phone

By clicking on the Pair button on the routers Nearby Devices page the pairing process will begin.

Figure 8: Available devices on the router

Bluetooth Manual 9

4.1 Pairing

Then, the code for confirmation will show both on the routers page and on the device

Figure 9: Pairing confirmation in the router app

Figure 10: Pairing confirmation in the phone

After confirmation, the device is successfully paired!

Figure 11: Paired devices displayed in the router

Bluetooth Manual 10

4.1 Pairing

Figure 12: Paired devices displayed in the phone

4.1.2 Automatic pairing controlled via BIN

The router is the responder.

If access to the router’s web UI is not enabled, the router provides pairing controlled via binary input.
A button can be connected to this binary input, and when the user holds it down, the router switches to
Pairable mode, automatically approving pairing requests.

The specific binary input to be used, if any, is determined in the configuration by the option Pairable when
BIN is low. The user will likely want the Discoverable option enabled as well to make the router visible.

Because no authentication is performed in this case, the user should be cautious about the presence
of any potential attackers in the vicinity who might attempt unauthorized pairing.

Bluetooth Manual 11

4.1 Pairing

4.1.3 Unpairing

If pairing is successful through either of the two methods, the paired device is automatically set to Trusted,
eliminating the need for separate authorization for individual services. The exchanged keys are stored for
long-term use (Bonded).

Pairing data, including keys, is stored on the router in the /var/data/bluetooth directory. Losing the con-
tents of this directory means losing the pairing information.

Figure 13: Paired, Bonded and Trusted device

Figure 14: Detail of the paired device in the phone

You can find a list of currently paired devices on the Paired Devices page. Paired devices are displayed
there, showing all their properties, regardless of whether they are currently in the vicinity. This allows for
unpairing devices that are no longer available.

Bluetooth Manual 12

4.2 Networking (PAN)

Unpairing is done by clicking the Unpair button in the Paired Devices or Nearby Devices list (if it is
currently discoverable in the vicinity).

Figure 15: Unpair

If you unpair an actively discoverable device, it may reappear in the Nearby Devices, but it might take a
moment.

If you need to pair/unpair in a shell script, you can use the bluetoothctl tool with the pair and remove
commands.

4.2 Networking (PAN)

PAN stands for Private Area Network. It’s a concept similar to WAN and LAN, but it represents an even
smaller network scope than LAN. Devices connected to PAN can communicate with each other as in a
regular network. For users, it behaves similarly to using Wi-Fi. With the right configuration, a router can
mediate internet connectivity through this method, similar to how it’s done on mobile phones, often referred
to as tethering or hotspot.

When PAN Support is enabled in the Bluetooth configuration, you can see the status profile on the card:

UUIDs: 00001116-0000-1000-8000-00805f9b34fb NAP

(Network Access Point). Conversely, the connected device must display the profile:

UUIDs: 00001115-0000-1000-8000-00805f9b34fb PANU

(PAN User).

There is also a GN profile for creating a mesh-type network. However, this is not currently supported on
Advantech routers. Likewise, the reverse direction, where the router connects to an access point, is not
supported.

On the phone, it’s necessary to enable Internet Access for the paired device in the Bluetooth config-
uration. For the router to mediate internet connectivity (WAN), the Masquerade outgoing packets option
must be enabled in the NAT menu. Without this, the router allows connected devices only within the local
network.

If the device on the router is not set to Trusted, authorization will be performed when enabling the profile
on the mobile side, but the router is not prepared for it.

Figure 16: Internet access

When PAN is enabled, the pan0 interface appears in the system. For each connected device, there will be
a bnepX interface.

Bluetooth Manual 13

4.3 BLE (sensors)

4.3 BLE (sensors)

Bluetooth is used to transfer general data. In addition BLE provided more ways how to send data - very
short data are often send as manufacturer data item in advertising packets. For more complex cases are
services/characteristics used as defined in Bluetooth standard. In any cases you will need another software
for specific data. See the chapter 6 how to create own BLE application.

Bluetooth Manual 14

5. Command line tools

• bluetoothctl - powerful command line utulity for discovery, connect, disconnect, scan, pair etc. You
will find more on how to use this tool in shell scripts to work with BLE sensors in examples 1 and 2

• bneptest - development and debugging utilities for the bluetooth protocol stack

• btmon - Bluetooth monitor.

• dbus-monitor - command is used to monitor messages going through a D-Bus message bus. dbus-
monitor has two different output modes, the ’classic’-style monitoring mode and profiling mode. The
profiling format is a compact format with a single line per message and microsecond-resolution tim-
ing information. The –profile and –monitor options select the profiling and monitoring output format
respectively. If neither is specified, dbus-monitor uses the monitoring output format. dbus-monitor is
not part of the Bluetooth, but its closely connected with BluZ, which D-Bus uses primarily for commu-
nication with applications.

• dbus-send - used to send a message to a D-Bus message bus. This tool is useful for testing end
debuging. dbus-send is not part of the Bluetooth, but its closely connected with BluZ, which D-Bus
uses primarily for communication with applications.

• l2ping - L2ping sends a L2CAP echo request to the Bluetooth MAC address bd_addr given in dotted
hex notation. This tool is useful for testing end debuging.

• l2test - Tool for testing Bluetooth communication on lower level.
Example:
On router run "l2test -r" and on PC with Bluetooth run "l2test -s BT_ROUTER_ADDRESS" and you
should see on router that Bluetooth data are received.

Bluetooth Manual 15

6. Examples

The following examples demonstrate how to Bluetooth use capabilities in customer projects. They cover
different Bluetooth communication types as well as different programming languages and environments.
We hope that a combination of all these examples covers most of your project issues.

You can also find other Bluetooth examples in the Node-RED guide (examples 4 and 5).

6.1 Reading from a BLE sensor in the Shell script

In this example we tell the temperature from a TokenCube BLE tag on the SMS request.

Figure 17: Manufacturer data for Example 1

The above-mentioned sensor advertises data via the manufacturer data item. We need to know the data
structure to process it. Advantech does not provide this information. You have to ask the sensor vendor.
Brief information for this particular example follows:

Byte Nr. Description Value

0..1 Manufacturer ID 0xFFEE

2 Hardware ID 0x04 – Token version 4

3 Firmware version 0x01

4 Page number – first nibble is
total number of pages, sec-
ond nibble is page number

0x21 or 0x22 – two pages,
first or second page

5 Sensor identifier 0x01..0x0A – normal mode,
0x81..0x8A – alarm mode;
see next table for normal
mode

6..x1 Sensor value —

(x1+1) Next sensor identifier —

(x1+2)..x2 Next sensor value —

Table 1: Data structure

Bluetooth Manual 16

6.1 Reading from a BLE sensor in the Shell script

ID Sensor Type Values Interpretation Value

0x01 Temperature °C int16, BE 0x14 0x03 = 5123 = 51.23 °C

0x04 Humidity % RH int16, BE 0x10 0x87 = 4231 = 42.31 %

other sensor IDs . . .

Table 2: Data interpretation

The tag advertises data alternately in two different records due to the limited size of manufacturer data.
You can see an example of that data with marked temperature bytes representing 22.3 °C bellow:

Figure 18: Manufacturer data for example 2

We will use the standard BlueZ tool – bluetoothctl to get data

Figure 19: Use of bluetoothctl

And we will process it with the awk tool. We try to read data several times, as we need the page
containing temperature data.

Note: Many sensors have a much easier data structure then this tag (one data block only, values defined
by fixed position in data stream instead prefixes and so on). Even though the temperature data should be
found by the ID 0x01, our tested tags return temperature as the first value every time, thus we read it fixed
as first in our example to code be clearer and simpler to understand.

Put result script to /var/scripts/sms. Don’t forgot to replace address ED:75:24:09:F9:37 with your tag
address and set the script as executable.

#/bin/sh

if ["$3" == "TEMPERATURE"]; then

ATTEMPT=200

while [$ATTEMPT -gt 0 -a "$TEMPERATURE" == ""]; do

TEMPERATURE=`bluetoothctl info ED:75:24:09:F9:37 | \

awk '/ManufacturerData Value:/ {next} /^\s+04 01 21/ \

{print (("0x"$5)*256 + ("0x"$6))/100;exit;}'`

ATTEMPT=$(($ATTEMPT - 1))

done

Bluetooth Manual 17

6.1 Reading from a BLE sensor in the Shell script

if ["$TEMPERATURE" != ""]; then

gsmsms $2 "Temperature is $TEMPERATURE degree Celsius"

else

gsmsms $2 "Temperature value is not available"

fi

fi

Now when you send SMS “temperature” (mwan daemon passes it as argument $3 to you script, case
insensitive) to your router’s SIM phone number, you will get back the temperature value to the original
phone number (argument $2). Note, you need mwan up so that SMS receiving works. It is also good
to limit accepting originated phone numbers in the real application (consult it with the router configuration
manual). Note, also the /var/scripts folder is erased on reboot so you must renew the script every time,
e.g. copy it with the system Startup script or with the init script in your own Router App.

Figure 20: TokenCube BLE tag

Bluetooth Manual 18

6.2 Writing to a BLE device in the Shell script

6.2 Writing to a BLE device in the Shell script

Some devices are switched On/Off via Jolland IoT ZL-R02 BLE relay module at specified times in this
example.

Figure 21: Manufacturer data

Namely the module ZL-RC02V3 uses the BLE service and characteristic to control relays. You can ex-
plore BLE charcteristics with bluetoothctl tool. Start it, connect to the relay module with connect command
(e.g. connect 18:93:D7:00:4D:79) and go to the gatt submenu with menu gatt. Then you can use list-
attributes and attribute-info. We are interested in 0000ffe1-0000-1000-8000-00805f9b34fb characteristic.

Bluetooth Manual 19

6.2 Writing to a BLE device in the Shell script

Figure 22: BLE characteristics

Bluetooth Manual 20

6.2 Writing to a BLE device in the Shell script

Among other things, we can find this information in the relay module documentation:

Command Byte sequence

Close the first relay C5 04 XX XX XX XX XX XX XX XX AA

Open the first relay C5 07 XX XX XX XX XX XX XX XX AA

Close the second relay C5 05 XX XX XX XX XX XX XX XX AA

Open the second relay C5 06 XX XX XX XX XX XX XX XX AA

Where 8 XX bytes is a password. Default password is “12345678” (in ASCII).

Table 3: Relay control commands

You must contact the relay module vendor to get the full documentation. Advantech does not provide it.

We will also use bluetoothctl to control relays in the final example. Put the next script to /var/scripts/relays

#/bin/sh

case "$1" in

ON)

R1=0x04

;;

OFF)

R1=0x06

;;

*)

echo "The first relay state is invalid"

exit 1

;;

esac

case "$2" in

ON)

R2=0x05

;;

OFF)

R2=0x07

;;

*)

echo "The second relay state is invalid"

exit 1

;;

esac

bluetoothctl connect 18:93:D7:00:4D:79

if [$? -ne 0]; then

logger -t relays "Faild to connect to relays"

fi

echo -e \

"menu gatt\n" \

"select-attribute 0000ffe1-0000-1000-8000-00805f9b34fb\n" \

"write \"0xC5 $R1 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0xAA\"\n" \

"write \"0xC5 $R2 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0xAA\"\n" \

| bluetoothctl

bluetoothctl disconnect 18:93:D7:00:4D:79

Bluetooth Manual 21

6.2 Writing to a BLE device in the Shell script

and the following as /var/scripts/crontab

00 02 * * * root /var/scripts/relays ON OFF

10 02 * * * root /var/scripts/relays ON ON

00 03 * * * root /var/scripts/relays OFF OFF

Finally, run the cron daemon

/etc/init.d/cron start

Now it should switch on the first relay at 2 am, at the second at 10 minutes later and switch off both relays
at 3 am every day.

Note: The /var/scripts folder is erased on reboot so you must renew the script every time, e.g. copy it
with the system Startup script or with the init script in your own Router App.

Figure 23: Jollan relay

Bluetooth Manual 22

6.3 Reading a BLE sensor in C

6.3 Reading a BLE sensor in C

This example demonstrates how to read data from BLE TPMS (Tyre Pressure Monitoring Sensor) in C
language.

Figure 24: Sensor data

Used sensors propagates data via manufacturer data advertising item. Note, the sensors broadcast at
very long interval and when they detect any pressure change to safe a battery. So you a need permanently
running application – daemon for the real application. The example is written to run in front and show
results for demonstration. You can dismount/mount sensor to the tyre to force it to send data.

We have two options with BlueZ – HCI and D-Bus. We will use HCI API in this example. As it is
complicated for advanced topics, BlueZ authors recommend a newer D-Bus API. See the next example.

Note: You need Linux environment for next work. Ubuntu is sugested.

This example is a bit complex as we need a cross compiler and several dependencies. We will solve the
first prerequisite with our Router App SDK. Please pull the following from the public git:

git clone https://marek_cernocky@bitbucket.org/bbsmartworx/modulessdk.git

git clone https://marek_cernocky@bitbucket.org/bbsmartworx/toolchains.git

Rename the first repository to ModulesSDK. Install deb or rpm packages from the second repository. You
can find more details about how to build the Router App in the DevZone section on www.advantech.com.

Makefile solves dependencies by downloading their source codes from Internet and building them right
way. Note, it tries to built only the necessary parts.

Now switch to ModulesSDK/modules and copy the template to our new project tyres. You can change
the content of tyres/merge/etc/name and tyres/merge/etc/version (its not essential for our example).

Bluetooth Manual 23

www.advantech.com

6.3 Reading a BLE sensor in C

Then remove all content of the tyres/source folder and place the following two files to it:

Makefile

include ../../../Rules.mk

DEPSDIR = deps.$(PLATFORM)

INSTDIR = $(CURDIR)/$(DEPSDIR)/usr

DEPENDS += $(DEPSDIR)

CPPFLAGS += -I$(INSTDIR)/include -Wno-missing-braces

LDFLAGS += -L$(INSTDIR)/lib -pthread

LDLIBS += -lbluetooth -lncurses

TYRES_EXE = tyres

TYRES_SRC = tyres.c

$(eval $(call build-program, $(TYRES_EXE), $(TYRES_SRC)))

$(DEPSDIR):

@mkdir $(DEPSDIR)

@echo "Downloading dependencies sources"

@wget -P $@ https://github.com/libexpat/libexpat/releases/download/R_2_2_10/expat-2.2.10.tar.

bz2

@wget -P $@ https://dbus.freedesktop.org/releases/dbus/dbus-1.13.18.tar.xz

@wget -P $@ ftp://ftp.cwru.edu/pub/bash/readline-8.1.tar.gz

@wget -P $@ ftp://ftp.invisible-island.net/ncurses/ncurses-6.2.tar.gz

@wget -P $@ ftp://sourceware.org/pub/libffi/libffi-3.3.tar.gz

@wget -P $@ https://zlib.net/zlib-1.2.11.tar.xz

@wget -P $@ https://download.gnome.org/sources/glib/2.56/glib-2.56.4.tar.xz

@wget -P $@ http://www.kernel.org/pub/linux/bluetooth/bluez-5.55.tar.xz

@echo "Extractings dependencies"

@tar -x -C $@ -f $@/expat-2.2.10.tar.bz2; mv $@/expat-2.2.10 $@/expat

@tar -x -C $@ -f $@/dbus-1.13.18.tar.xz; mv $@/dbus-1.13.18 $@/dbus

@tar -x -C $@ -f $@/readline-8.1.tar.gz; mv $@/readline-8.1 $@/readline

@tar -x -C $@ -f $@/ncurses-6.2.tar.gz; mv $@/ncurses-6.2 $@/ncurses

@tar -x -C $@ -f $@/libffi-3.3.tar.gz; mv $@/libffi-3.3 $@/libffi

@tar -x -C $@ -f $@/zlib-1.2.11.tar.xz; mv $@/zlib-1.2.11 $@/zlib

@tar -x -C $@ -f $@/glib-2.56.4.tar.xz; mv $@/glib-2.56.4 $@/glib

@tar -x -C $@ -f $@/bluez-5.55.tar.xz; mv $@/bluez-5.55 $@/bluez

@echo "Building dependencies"

@cd $@/expat; ./configure --host=$(HOST) --prefix=$(INSTDIR) --disable-shared CC="$(CC)" CFLAG

="$(CFLAGS)"; make; make install

@cd $@/dbus; ./configure --host=$(HOST) --prefix=$(INSTDIR) --disable-shared --enable-static

--disable-systemd --disable-selinux --disable-tests CC="$(CC)" CPPFLAGS="-I$(INSTDIR)/

include" CFLAG="$(CFLAGS)" LDFLAGS="-L$(INSTDIR)/lib"; make; make install

@cd $@/readline; ./configure --host=$(HOST) --prefix=$(INSTDIR) --disable-shared --enable-

static --disable-install-examples CC="$(CC)" CFLAG="$(CFLAGS)"; make; make install

@cd $@/ncurses; ./configure --host=$(HOST) --prefix=$(INSTDIR) --with-shared=no --without-

progs --without-tests --without-manpages --disable-database --with-fallbacks=xterm-256color

CC="$(CC)" CFLAG="$(CFLAGS)"; make; make install

@cd $@/libffi; ./configure --host=$(HOST) --prefix=$(INSTDIR) --disable-shared --disable-

builddir CC="$(CC)" CFLAG="$(CFLAGS)"; make; make install

@cd $@/zlib; ./configure --prefix=$(INSTDIR) --static; make CC="$(CC)" CFLAG="$(CFLAGS)"; make

install

@cd $@/glib; ./configure --host=$(HOST) --prefix=$(INSTDIR) --disable-shared --enable-static

Bluetooth Manual 24

6.3 Reading a BLE sensor in C

--with-pcre=internal --disable-fam --disable-libelf --disable-libmount --disable-selinux --

disable-man --disable-debug glib_cv_stack_grows=no glib_cv_uscore=no CC="$(CC)" CFLAG="$(

CFLAGS)" LIBFFI_CFLAGS="-I$(INSTDIR)/include" LIBFFI_LIBS="-L$(INSTDIR)/lib -lffi"

ZLIB_CFLAGS="-I$(INSTDIR)/include" ZLIB_LIBS="-L$(INSTDIR)/lib -lz"; make; make install

@cd $@/bluez; ./configure --host=$(HOST) --prefix=$(INSTDIR) --enable-library --disable-shared

--enable-static --disable-tools --disable-datafiles --disable-client --disable-obex --

disable-monitor --disable-mesh --disable-cups --disable-systemd CC="$(CC)" CPPFLAGS="-I$(

INSTDIR)/include" CFLAG="$(CFLAGS)" LIBS="-L$(INSTDIR)/lib -lncurses" GLIB_CFLAGS="-I$(

INSTDIR)/include/glib-2.0 -I$(INSTDIR)/lib/glib-2.0/include" GLIB_LIBS="-L$(INSTDIR)/lib -

lglib-2.0 -lgobject-2.0 -lgio-2.0 -lgmodule-2.0"; make; make install

install:

@install -d $(DESTDIR)/bin

@install -m 755 $(OBJDIR)/$(TYRES_EXE) $(DESTDIR)/bin/

clean:

rm -rf $(OBJDIR) $(DEPSDIR)

tyres.c

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <syslog.h>

#include <ncurses/curses.h>

#include <bluetooth/bluetooth.h>

#include <bluetooth/hci.h>

#include <bluetooth/hci_lib.h>

#define VALS_STR_SIZE 19

// to parse iBeacons

typedef struct {

uint8_t length;

uint8_t type;

unsigned char data[0];

} ibeacon_rec_t;

// to store measurements

typedef struct {

bdaddr_t address;

char values[VALS_STR_SIZE];

} sensor_t;

sensor_t sensors[4] = {

{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, "looking for sensor"}, // TPMS1-front left

{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, "looking for sensor"}, // TPMS2-front right

{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, "looking for sensor"}, // TPMS3-rear left

{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, "looking for sensor"}, // TPMS4-rear right

};

// pretty output for measured data

static void draw_tractor() {

char tractor[] =

"123456789012345678 123456789012345678\n"

"\n"

Bluetooth Manual 25

6.3 Reading a BLE sensor in C

" ##################\n"

" ########### /-##################-\\\n"

" ########### /---+-################## ||\n"

" | | | | ||\n"

" /-----+-+-------------| +-------+ |---/\n"

")| == == | | | |\n"

" | == == | | | |>\n"

")| == O == | | | |\n"

" \\-----+-+-------------| +-------+ |---\\\n"

" | | | | ||\n"

" ########### \\---+-################## ||\n"

" ########### \\-##################-/\n"

" ##################\n"

"\n"

"123456789012345678 123456789012345678";

memcpy(tractor , sensors[1].values, VALS_STR_SIZE - 1);

memcpy(tractor + 29 , sensors[3].values, VALS_STR_SIZE - 1);

memcpy(tractor + 689, sensors[0].values, VALS_STR_SIZE - 1);

memcpy(tractor + 718, sensors[2].values, VALS_STR_SIZE - 1);

mvaddstr(0, 0, tractor);

refresh();

}

int main() {

int hci_id; // adapter id

int hci_sock = 0; // socket to work with hci

struct hci_filter nf; // filter for scanner

unsigned char buffer[HCI_MAX_EVENT_SIZE]; // buffer to read packet in

int len; // read data length

evt_le_meta_event *meta; // pointer to event

le_advertising_info *info; // pointer to ble advertisement

ibeacon_rec_t *rec; // for iBeacon parsing

unsigned int i; // for general iterations

unsigned int report; // for event reports iteration

int pos; // curren position in data

unsigned int sensor; // selected sensor

uint32_t pressure; // pressure value

uint16_t temperature; // temperature value

fd_set fds; // set of descriptors for select()

int exit_code = EXIT_FAILURE; // status returned to terminal

// get the first adapter identifier

// if you dont connect an external adapter then it should be 0 every time

hci_id = hci_get_route(NULL);

if (hci_id < 0) {

syslog(LOG_WARNING, "Bluetooth adapter is off\n");

goto clean_finish;

}

// connect to the first adapter

hci_sock = hci_open_dev(hci_id);

if (hci_sock < 0) {

syslog(LOG_ERR, "Connecting to the adapter failed: %s\n", strerror(errno));

goto clean_finish;

Bluetooth Manual 26

6.3 Reading a BLE sensor in C

}

// we want only advertisements

hci_filter_clear(&nf);

hci_filter_set_ptype(HCI_EVENT_PKT, &nf);

hci_filter_set_event(EVT_LE_META_EVENT, &nf);

if (setsockopt(hci_sock, SOL_HCI, HCI_FILTER, &nf, sizeof(nf)) < 0) {

syslog(LOG_ERR, "Set HCI filter failed: %s\n", strerror(errno));

goto clean_finish;

}

// set BLE scanning parameters; at first is necessary call stop scanning for

// case scanning running, otherwise set parameters failes

if (hci_le_set_scan_enable(hci_sock, 0x00, 0, 1000) < 0 ||

hci_le_set_scan_parameters(hci_sock, 0x01, htobs(0x0010), htobs(0x0010), 0x00, 0x00, 1000) <

0) {

syslog(LOG_ERR, "Setting BLE scan parameters failed: %s\n", strerror(errno));

goto clean_finish;

}

// start BLE scanning without filtering duplicity

if (hci_le_set_scan_enable(hci_sock, 0x01, 0, 1000) < 0) {

syslog(LOG_ERR, "BLE scanning start failed: %s\n", strerror(errno));

goto clean_finish;

}

// initialize screen

initscr();

curs_set(0);

draw_tractor();

// infinite loop

while (1) {

// infinite wait for hci data ready or signal interrupt

FD_ZERO(&fds);

FD_SET(hci_sock, &fds);

if (select(hci_sock + 1, &fds, NULL, NULL, NULL) < 0) {

if (errno == EINTR)

// it was signal

exit_code = EXIT_SUCCESS;

else

syslog(LOG_ERR, "Waiting for data error: %s\n", strerror(errno));

goto clean_finish;

}

// read data from hci socket

len = read(hci_sock, buffer, sizeof(buffer));

if (len == 0) {

goto clean_finish;

}

// the first skipped byte is packet type

meta = (evt_le_meta_event*) (buffer + (1 + HCI_EVENT_HDR_SIZE));

// skipped data[0] is number of reports

info = (le_advertising_info*) (meta->data + 1);

Bluetooth Manual 27

6.3 Reading a BLE sensor in C

// cycle through reports

for (report = 1; report <= meta->data[0]; report++) {

// walk through beacon data

pos = 0;

// we may not go out of records part and out of the read block

while (pos < info->length - 1 && info->data + pos + info->data[pos] < buffer + len) {

rec = (ibeacon_rec_t*)(info->data + pos);

// we interested in type 0x09 (complete name) na 0xff (manuf. data) only

switch (rec->type) {

// the complete name

case 0x09:

// if advertised complete name is "TMPSx" where x is from 1 to 4

if (rec->length == 13 && memcmp(&rec->data, "TPMS", 4) == 0 &&

rec->data[4] >= '1' && rec->data[4] <= '4') {

// get index to sensors array by sensor number

sensor = rec->data[4] - '1';

// store mac address

memcpy(&sensors[sensor].address, &info->bdaddr, sizeof(bdaddr_t));

}

break;

// the manufacturer data

case 0xff:

// check if it is one of sensors we intersted in

for (i = 0; i < sizeof(sensors); i++) {

if (memcmp(&sensors[i].address, &info->bdaddr, sizeof(bdaddr_t)) == 0) {

// it is our sensor, let's go parse data

// last byte: 0x00 = regular measurement, 0x01 immeasurable pressure

if (rec->data[17] == 0x01) {

memcpy(sensors[i].values, "not mesurable ", VALS_STR_SIZE - 1);

} else {

// bytes from 10 to 12 are bigendian pressure

pressure = rec->data[8] + (rec->data[9] << 8) + (rec->data[10] << 16);

// bytes 14 and 15 are bigendian temperature

temperature = rec->data[12] + (rec->data[13] << 8);

// store human readable values

snprintf(sensors[i].values, VALS_STR_SIZE, "%5u kPa, %3u C ",

pressure/1000, temperature/100);

}

draw_tractor();

break;

}

}

}

pos += 1 + rec->length;

}

// move to next report

info = (le_advertising_info*) (((char*)info) + sizeof(le_advertising_info) + info->length +

1);

}

Bluetooth Manual 28

6.3 Reading a BLE sensor in C

}

clean_finish:

// restore screen

endwin();

if (hci_sock) {

// stop BLE scanning

hci_le_set_scan_enable(hci_sock, 0x00, 0, 1000);

// disconnect from adapter

close(hci_sock);

}

return exit_code;

}

Makefile is not commented it is out of scope of this documentation. All steps in C source are commented
and some other notes follow.

Common steps for work with BLE sensors are:

• initialize – open device, set filter, set parameters, enable scanning)

• wait for data and read them – read() optionally with select()

• process read data with walk through structures (see bellow)

• stop – disable scanning, close device

Although you can directly work with HCI via socket only, it is a good idea to use BlueZ API with HCI
structure definitions and higher level functions. We use the following structures when parsing received HCI
event from scanning:

Figure 25: Structure of HCI event

Unfortunately API is missing definitions to work with beacon data as its structure is is not standardized
and more proprietary variants exist (AltBeacon, iBeacon, URIBeacon. . .). Used sensors send iBeacons.

We need to know the manufacturer data means in order to get the pressure and temperature. The
information necessary for this example you can be found in the code comments. Advantech does not
provide the third party sensor documentation. You must ask the sensor vendor.

When you have everything prepared, run make PLATFORM=v3. You can find result binary tyres you can
find in obj.v3 subfolder. Copy it to the router (e.g. with SFTP) and run it from the terminal. Of course you
can also install built Router App tyres.v3.tgz and then you find the binary in /opt/tyres/bin. After execution
you should see a similar screen:

Bluetooth Manual 29

6.3 Reading a BLE sensor in C

Figure 26: Example 3 output

Figure 27: Tyre pressure sensor

Bluetooth Manual 30

7. Related Documents

You can obtain product-related documents on Engineering Portal at icr.advantech.com address.

To get your router’s Quick Start Guide, User Manual, Configuration Manual, or Firmware go to the Router
Models page, find the required model, and switch to the Manuals or Firmware tab, respectively.

The Router Apps installation packages and manuals are available on the Router Apps page.

For the Development Documents, go to the DevZone page.

Bluetooth Manual 31

https://icr.advantech.com/
https://icr.advantech.com/support/router-models
https://icr.advantech.com/support/router-models
https://icr.advantech.com/products/software/user-modules
https://icr.advantech.com/devzone

	Changelog
	Bluetooth Changelog

	Introduction
	Web Interface
	Information
	Status
	Nearby Devices

	Configuration
	Global
	Paired devices

	General
	Licenses

	Bluetooth usage
	Pairing
	Manual from Nearby Devices menu section
	Automatic pairing controlled via BIN
	Unpairing

	Networking (PAN)
	BLE (sensors)

	Command line tools
	Examples
	Reading from a BLE sensor in the Shell script
	Writing to a BLE device in the Shell script
	Reading a BLE sensor in C

	Related Documents

